

Constraining non-Gaussianity: current LSS and ISW data and outlook for the DES

Tommaso Giannantonio LMU Munich & Excellence Cluster

Outline

- Large-scale structure and **Primordial non-Gaussianity** (PNG)
- Scale-dependent, **non-local** bias
- LSS & correlation with the CMB: the integrated Sachs-Wolfe (ISW) effect
- Updates on combined LSS+ISW data: the Luminous Red Galaxies from BOSS
- Combined measurement of PNG from LSS+ISW data
- PNG with **DES** and Euclid
- Conclusions

Collaborators: R. Crittenden, B. Nichol, W. Percival, A. Ross, C. Porciani, J. Weller, M. Kilbinger

Theory

Constraining the early universe

- Many models available
 - single field
 - many fields
 - slow or fast decay
 - various possible kinetic terms
 - cyclic/ekpyrotic models...
- Simplest models predict:
 - 1. near-flatness √
 - 2. nearly scale-invariant power spectrum \checkmark
 - 3. curvature perturbations only ~ [Valiviita & TG 09]
 - 4. nearly Gaussian distribution ?
- Other models: many configurations: kernel W.
 Φ: primordial potential; φ Gaussian. Amount of NG: f_{NL}

$$\Phi(\mathbf{x}, z_*) = \varphi(\mathbf{x}, z_*) + (f_{\mathrm{NL}} * W * \varphi * \varphi) (\mathbf{x}, z_*)$$

Non-Gaussianity and the LSS

[Millennium run, Springel et al. 09]

- Dark matter perturbations $\delta_m > d.m.$ haloes $\delta_h > galaxies \, \delta_g$
 - halo mass function: halo bias, $\delta_h = b_h \, \delta_m$
 - halo occupation distribution: galaxy bias, $\delta_g = b_g \delta_m$
- PNG: strongly scale-dependent b
- Spectra (gal-gal) ~ b² and (gal-CMB) ~ b: constraints on PNG! [Slosar et al 08, ...]
- Also small effect on P_{matter} from bispectrum [Taruya et al 08]

• δ_{I} , ϕ_{I} related by Poisson eq, but **non-local**

Current data: LSS & ISW

LSS tomography & Correlation with the CMB: The ISW effect [Sachs & Wolfe 67]

- Integrated Sachs-Wolfe: Secondary effect on the CMB: $\frac{\delta T}{T} = 2 \int_{\gamma} \dot{\Phi}[r(t), t] dt$
- No effect in matter domination as

 $\delta_m \propto a \Rightarrow \dot{\Phi} = 0$

The cross-correlation method [Crittenden & Turok 95]

• Total observed CMB: sum of primary + secondary

- **Primary**: **uncorrelated** with large-scale structure, z too high!
- **ISW**: highly correlated through the gravitational potential Φ

ISW signal: Detectable cross-correlating <CMB x LSS>

- linear, large-scale effect: need wide and deep density maps
- non-zero signal ONLY with dark energy (or K)

Observations match LCDM, low S/N ~ 2: **combine**! [TG et al 08, Ho et al, 08]

Combined LSS+ISW analysis, updated [TG 08, TG 12 et al, submitted]

- data maps, pixellated resolution = 0.9 deg _
 - density: 6 galaxy catalogues: 2MASS, SDSS (main gal DR8, LRG DR7-8, QSO DR6), NVSS, HEAO
 - temperature: now WMAP7 (ILC, Q, V, W)
- masks
 - survey geometry (DR8: 24% increase)
 - foregrounds:
 - extinction, galactic plane cut + bright sources (NVSS, HEAO)

Systematics [TG et al. 12a, MNRAS submitted]

 WMAP3 → 7: little change, NVSS closer to LCDM CMB-Frequency independent: no evidence for contamination, SZ, etc.

[TG et al. 12a, MNRAS submitted]

New data: consistent with old

- Main galaxies SDSS DR8:
 - 24% extra sky area, in S
 - 0.1 < z < 0.9; σ(z) < 0.5 z
 - 18 < r < 21
 - Now ~40 Million gals!
 - Reddening mask A_r > 0.18
 - no difference in CCF

- LRG [Thomas et al. 10] DR7: more excess
 - 10% area increase
 - completeness cut: i < 19.8
 - Star-gal separation: $\delta_{sg} > 0.2$
 - 1.4 Million LRGs, some difference in large-scale CCF (mostly due to change in WMAP and **mask**)
- Even better LRG data [Ross et al. 11] DR8...

Full bias analysis of LSS + ISW data & f_{NL}

- Measure (local) f_{NL} via b
- Not only (Tg) ∝ b, but also ALL (gg) ∝ b² correlations
- Data: all 27 2-pt functions!
- For each catalogue we model $b_i(k,z) = b_{i0}(z) + \Delta b (k,z)$
- Several models for Gaussian b₀:
 - constant $b_i(z) = b_{0i}$
 - evolving $b_i(z) = 1 + (b_{0i} 1) / D(z)$

two-point correlation functions

nuisance parameters

Monte Carlo likelihood analysis

- Full Covariance Matrix (351x351) from 10,000 Monte Carlo mocks
- Theory models: with modified Camb code
- Monte Carlo likelihood analysis, marginalising over (nestled sampling)
 - cosmology (7 params)
 - 6 nuisance parameters b_{0i}
 - 3 nuisance parameters κ_i: stellar contamination

• **Results:** (mostly from QSO ACF: high b)

preliminary, **16 < f**_{NL} **< 60** @ 95% c.l.

Forecasts

Primordial NG with DES and Euclid

Euclid

- Combining: lensing + galaxy clustering
- Following Hu & Jain 04
- Including primordial non-Gaussianity

- DES:
 - Starting soon!
- Euclid: future ESA mission
 - In L2 orbit, launch ~2019
 - Imaging (vis+IR) + spectra
 - Measure w₀ to few %!

Mapping the geometry of the dark Universe

Specifications

• Euclid photometric: Shear & gal 2D spectrum

- 15,000-20,000 sq. deg
- shapes of 2 bn galaxies to z = 2
- median z = 1, $\sigma_z < 0.05 (1+z)$
- density 40 / arcmin²
- Euclid spectroscopic (slitless): also 3D spectrum + RSD + Alcock-Paczinsky
 - H_{α} range 1000 2000 nm: 0.5 < z < 2
 - 80 M galaxies
 - median z = 1.1, $\sigma_z < 0.001 (1+z)$
 - density ~ 1 / arcmin²
- DES: photometric: Shear & gal 2D spectrum
 - 5,000 sq. deg
 - shapes of 300 M galaxies to z=2
 - median z = 0.8, σ_z < 0.1 (1+z)
 - density 12 / arcmin²

22

Results [TG et al. 11]

• **Combined** lensing + 2D gal spectrum Fisher forecast:

$$C_{l}^{\epsilon_{i}\epsilon_{j}} \qquad C_{l}^{g_{i}g_{j}} \qquad D_{l\alpha}^{\epsilon_{i}\epsilon_{j}} = \frac{\partial C_{l}^{\epsilon_{i}\epsilon_{j}}}{\partial \vartheta_{\alpha}} \qquad \mathbf{c}^{\mathbf{a}}$$

$$F_{\alpha\beta}^{x} = f_{\text{sky}} \sum_{l=l_{\text{min}}}^{l_{\text{max}}} \frac{(2l+1)}{2} \operatorname{Tr} \left[\mathbf{D}_{l\alpha}^{x} \left(\tilde{\mathbf{C}}_{l}^{x} \right)^{-1} \mathbf{D}_{l\beta}^{x} \left(\tilde{\mathbf{C}}_{l}^{x} \right)^{-1} \right] \mathbf{c}^{\mathbf{a}}$$
[Hu & Jain 04]

- includes <lens-gal> spectrum
- Red: with Planck TT priors
- Euclid accuracy on local f_{NL}: ±3
- For DES: accuracy on $f_{NL} \sim \pm 8$
- Running: $n_{fNL} \sim \pm 0.12$ if $f_{NL} = 30$
- lens+gal matrix sum: worse

Critical assumption for f_{NL} : $b_{fiducial} (z) \sim (1+z)^{1/2}$, similar to Orsi et al. 09.

23

Conclusions & Future Work

- LSS+ISW updated: consistent with older data, still S/N > 4
- Now better systematics control (stars, rotations, ...)
- Likelihood analysis: now better use of ACF (full covariance) and bias (marginalization)
- Non-Gaussianity: $16 < f_{NL} < 60 @ 95\%$ c.l., but stars are a big issue
- BOSS: better systematics control
 DR8 QSO
 LSS+ISW analysis with 3D clustering (DR9, DR10)
 DES: f_{NL} ± 8 gal-gal, CMB-gal, CMB-shear
 Euclid: f_{NL} ± 3

joint analysis, VERY PRELIMINARY, margin. error on local f_{NL} ± ~20 @ 95% c.l.

Differences from local approach

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09]

