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+
+

.  .  .
〈#(x)#(y)#(z)#(w)#(s)〉= 0

vanishing or trivially related to two-point

single-field, slow-roll inflation predicts this

observations suggest IC’s are nearly 
Gaussian

BUT small departures may exist 
and could provide one of few 

observational handles on physics of 
inflation



Example mildly non-Gaussian initial conditions
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“fNL”  probability

# value

skewness ~ fNL

kurtosis ~ fNL
2

. . .

#(x) ! !%(x)+ fNL !%(x)2 
Salopek and Bond 1990; Gangui, 

Lucchin, Matarrese, Mollerach 1994; 
Komatsu and Spergel 2001 

here, !% is a Gaussian field.  
the non-linear terms in !% 

make # non-Gaussian

this map 
completely 
specifies # 
statistics



“fNL”

“gNL”

 probability

# value

skewness ~ fNL

kurtosis ~ fNL
2

# value

probability skewness ~ 0

kurtosis ~ gNL

. . .

. . .

#(x) ! !%(x)+ fNL !%(x)2 

#(x) ! !%(x) + gNL !%(x)3 + . . . 

Salopek and Bond 1990; Gangui, 
Lucchin, Matarrese, Mollerach 1994; 

Komatsu and Spergel 2001 

(Okamoto and Hu 2002; Enqvist and Nurmi 2005) 



“fNL”

“gNL”

“&NL”

 probability

# value

skewness ~ fNL

kurtosis ~ fNL
2

# value

probability skewness ~ 0

kurtosis ~ gNL

 probability

# value

skewness ~ fNL

kurtosis ~ &NL
&NL= fNL

2(1 + P""/P%% )

(#=primordial gravitational potential)

fNL = fNL(1 + P""/P%% )2~

and P"% = 0 

. . .

. . .

#(x) ! !%(x)+ fNL !%(x)2 

#(x) ! !%(x) + gNL !%(x)3 + . . . 

#(x) ! !"(x)+ !%(x) + fNL!%(x)2 + . . .~

Salopek and Bond 1990; Gangui, 
Lucchin, Matarrese, Mollerach 1994; 

Komatsu and Spergel 2001 

(Okamoto and Hu 2002; Enqvist and Nurmi 2005) 

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)



more generally, non-Gaussianity introduces 
non-trivial multi-point correlation functions 

(or polyspectra)

Those were the non-Gaussian (1-point) 
probability distributions functions

but
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(#=primordial gravitational potential)

〈#(k)#(k’)#(k’’)〉= 2fNL (P#(k) P#(k’) + . . .) (2!)3 !(k+k’+k’’)

largest in the 
“squeezed” limit 
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Bispectrum:

Trispectrum:
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}
so gNL and &NL different ``shape” trispectra

gNL term peaks in 
the limit &NL term peaks in 

the squashed limit



Helpful to consider how polyspectra  
couple different physical scales scales 



# ! !%+ fNL !%2 “fNL”
〈#short

2〉= 〈%G,short
2〉(1 + 4 fNL %G,long(x))

small-scale power depends on large-scale fluctuations!

(#=primordial gravitational potential)
Slosar, Hirata, Seljak, Ho, Padmanabhan 2008



# ! !%+ fNL !%2 “fNL”

# ! !% + gNL!%3 + . . . “gNL”

〈#short
2〉= 〈%G,short

2〉(1 + 4 fNL %G,long(x))

〈#short
3〉= 18 gNL〈%G,short

2〉%G,long(x) " fNL
eff (x)

2

(#=primordial gravitational potential)

〈%G,short
2〉2

small-scale power depends on large-scale fluctuations!

small-scale skewness depends on large-scale fluctuations!



# ! !%+ fNL !%2 “fNL”

# ! !% + gNL!%3 + . . . “gNL”

“&NL” # ! !"+ !% + fNL!%2 + . . .~

〈#short
2〉= 〈%G,short

2〉(1 + 4 fNL %G,long(x))

〈#short
3〉= 18 gNL〈%G,short

2〉%G,long(x) " fNL
eff (x)

2

〈#s
2〉= 〈#G,short

2〉(1 + 4 fNL%G,long(x))

# = "+%

~

(#=primordial gravitational potential)

〈%G,short
2〉2



These are cartoon examples
but these types of initial conditions can 

arise from real models
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For instance

"
inflaton

potential ! V(",%) 
!"

%
curvaton

!%

Linde and Mukhanov 1997; Lyth and Wands 2002

curvaton is an additional light (mcurv. << H) 
field that gets excited and eventually 
generates curvature perturbations # 

inflaton dominates energy density, 
drives exponential expansion

 H2 =  8!G/3 (1/2 "2 + V(")) 
.



For instance

"
inflaton

potential ! V(",%) 
!"

total energy dominated by inflaton:

perturbations from 
inflaton Gaussian

%
curvaton

!%

curvature perturbations from curvaton can be non-Gaussian

 # ! !% + !%2 

# ! !% + !%3 + . . . 

# ! !"+ !% + !%2 + . . .
Linde and Mukhanov 1997; Lyth and Wands 2002

“fNL”

“gNL”

“&NL”

 H2 =  8!G/3(1/2 "2 + V(")) 
.



For instance

"
inflaton

potential ! V(",%) 
!"

total energy dominated by inflaton:

perturbations from 
inflaton Gaussian

%
curvaton

!%

curvature perturbations from curvaton can be non-Gaussian

 # ! !% + !%2 

# ! !% + !%3 + . . . 

# ! !"+ !% + !%2 + . . .
Linde and Mukhanov 1997; Lyth and Wands 2002

“fNL”

“gNL”

“&NL”

non-linearities all 
“local” in position space 

 H2 =  8!G/3(1/2 "2 + V(")) 
.



But local models (i.e. #NG(x)=F(%G(x))) of non-
Gaussianity is not the only option

 # ! !% + !%2 

# ! !% + !%3 + . . . 

# ! !"+ !% + !%2 + . . .

“fNL”

“gNL”

“&NL”

non-linearities all 
“local” in position space 



Single-field inflation with strong self-interactions   
can also generate detectable non-Gaussianity

〈#(k)#(k’)#(k’’)〉
largest in the 

“equilateral” limit 
k

k’

k’’

(e.g. Dirac-Born-Infeld inflation, k-inflation, ghost inflation, inflation w dissipation)

skewness, bispectrum amplitude
〈#3〉

shape

BUT vanish in the 
“squeezed” limit k

k’
k’’

Alishahiha, Silverstein, Tong 2004; Armendariz-Picon, Damour, Mukhanov 1999; Arkani-Hamed, Creminelli, Mukohyama, 
Zaldarriaga 2004; Nacir, Porto, Senatore, Zaldarriaga 2012

see Babich, Creminelli, Zaldarriaga 2004;  Chen, Huang, Kachru, Shiu 2006; Senatore, Smith, Zaldarriaga 2011 
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shape

# 1/cs
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Single-field inflation with strong self-interactions   
can also generate detectable non-Gaussianity

〈#(k)#(k’)#(k’’)〉
largest in the 

“equilateral” limit 
k

k’

k’’

(e.g. Dirac-Born-Infeld inflation, k-inflation, ghost inflation, inflation w dissipation)

skewness, bispectrum amplitude
〈#3〉

shape

BUT vanish in the 
“squeezed” limit k

k’
k’’

Alishahiha, Silverstein, Tong 2004; Armendariz-Picon, Damour, Mukhanov 1999; Arkani-Hamed, Creminelli, Mukohyama, 
Zaldarriaga 2004; Nacir, Porto, Senatore, Zaldarriaga 2012

see Babich, Creminelli, Zaldarriaga 2004;  Chen, Huang, Kachru, Shiu 2006; Senatore, Smith, Zaldarriaga 2011 

k k’’

k’
or “orthogonal” 

shape

# 1/cs
2 

where, vanish 
means 

0+O(kL
2/ks

2)



a single-field that violates slow-roll can also 
generate observable non-Gaussianity

Chen, Easther, Lim 2006; Chen, Easther, Lim 2008; Flauger & Pajer 2010 

(e.g. Axion monodromy: McAllister, Silverstein, Westphal 2008; Flauger, McAllister, Pajer, 
Westphal, Xu 2009)

V(")

"

V(")

"

Notice that in this range fφ∗ ! 1 is always satisfied.
The shape of resonant non-Gaussianity for axion monodromy inflation is shown in Fig-

ure 2 for b = 10−2, fφ∗ = 2× 10−2, and fixed k1 = k∗ = 0.002Mpc−1. We chose this value of
f because both the leading contribution and the subleading contribution in fφ∗ are clearly
visible. Notice that as the value of k1 changes, the phase of the oscillation changes.

fΦ"#0.02MP
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Figure 2: This plot shows the shape G(k1, k2, k3)/(k1k2k3) of resonant non-Gaussianity for
the linear potential of axion monodromy inflation with b = 10−2, fφ∗ = 2 × 10−2 and fixed
k1 = k∗ = 0.002Mpc−1. We use the notation x2 = k2/k1 and x3 = k3/k1. The triangle
inequality implies x2+x3 ≤ 1 and the quantity is symmetric under interchange of x2 and x3

so that we show in the plot only the region 1/2 ≤ x2 ≤ 1.

We find that our analytic result for f res agrees with the values obtained by numerical
integration in [13] at the per cent level.15

3.2. Consistency relation

As pointed out in [11] (see also [12]), in the limit in which one of the momenta, say, k3
is much less than the other two, which are then roughly equal, k3 ! k1 ≈ k2 = k, the
three-point function is related to the two-point function by a consistency relation

lim
k3→0

〈R(k1, t)R(k2, t)R(k3, t)〉 ' −|R(o)
k3
|2

1

H(tk)

d

dtk
〈R(k1, t)R(k2, t)〉 , (3.31)

15For the comparison, notice that [13] uses a momentum dependent quantity f̃NL. In the equilateral limit,

they extract their quantity fA = −f̃ (eq)
NL . This quantity is related to our f res according to fA = 10f res/9.

17

k3/k1

k2/k1

still vanish in the 
“squeezed” limit k

k’
k’’

〈#(k)#(k’)#(k’’)〉
skewness, bispectrum amplitude
〈#3〉 # 

shape complicated!

local
feature in k 



single-field with modified initial vacuum state 
generates observable non-Gaussianity

Holman and Tolley 2008

 largest  in “flattened” 
configuration 

k
k’’

k’

still vanish in the 
“squeezed” limit k

k’
k’’

〈#(k)#(k’)#(k’’)〉
skewness, bispectrum amplitude
〈#3〉 # 'k ! e-k/k

2 2
cut-off

shape

but, may have non-vanishing contributions 
in a limited, observable k-range

Agullo & Shandera 2012; Ganc & Komatsu 2012



In fact:

Acquaviva, Bartolo, Matarrese, Riotto 2003; Maldacena 2003; Creminelli & Zaldarriaga 2004

(see also Tanaka, Urakawa 2011)

where  ns = dlnP#(k)/dlnk + 4  " 1

single-field inflation predicts 

the so called “consistency relation”

so fNL    few rules it out
~
>

〈#(k)#(k’)#(k’’-->0)〉" (ns-1)(2!)3 !(k+k’) P#(k) P#(k’’) 

}"fNL

k

k’
k’’



Note:

also have, 

single-field consistency relation

fNL
#ln k3P#
#ln k

 (ns-1)"

 also applies to gNL and &NL

=

gNL
#ln k6B#
#ln k

" = nNG

&NL "  (ns-1)2
e.g. Chen, Huang, Shiu 2008; Leblond & Pajer 2011 

Suyama & Yamaguchi 2008; Sugiyama, Komatsu, 
Futamase 2011; Smith, ML, Zaldarriaga 2011

&NL  > fNL
2

~

(see also Tanaka, Urakawa 2011)

in terms of physical observables these are strictly zero



Single-field models do not generate such 
extreme couplings of perturbations on short 
and long length scales

“squeezed” limit 
kS

kS-kL

P#(ks)

#(kL)

〈#(kS)#(-kS-kL)#(kL)〉! <P#(kS)#(kL)> ! fNL kS
-3 kL

-3

kL



mother fields >> H ----> single-field 

mother fields << H ----> other fields relevant

mother fields ! H ? ----> quasi single-field
Chen & Wang 2010; Baumann & Green 2011 

〈#(kS)#(-kS-kL)#(kL)〉! 0

can get〈#(kS)#(-kS-kL)#(kL)〉! fNLks
-3kL

-3



mother fields >> H ----> single-field 

mother fields << H ----> other fields relevant

mother fields ! H ? ----> quasi single-field

〈#(kS)#(-kS-kL)#(kL)〉! <P#(kS)#(kL)> ! fNL kS
-3 kL

-3

Chen & Wang 2010; Baumann & Green 2011 

kL

kS( )
3/2-(

( ~  $9/4 - m2/H2

intermediate scalings 
possible!

〈#(kS)#(-kS-kL)#(kL)〉= 0

〈#(kS)#(-kS-kL)#(kL)〉= fNLks
-3kL

-3



How does primordial non-
Gaussianity show up in large-scale 

structure?

"%
inflatoncurvaton

V(",%) 

?



HALO ABUNDANCE
dark matter halos form in peaks of the density field

non-Gaussianity changes the number density of peaks
Gaussian positive skewness no skewness, positive kurtosis

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

!M
!c

 probability

!M



HALO ABUNDANCE

 probability

!M

dnNG
dM

dnG
dM

seems to work 
in comparison to 

N-body!

no
n-

G
au

ss
ia

n 
co

rr
ec

ti
on

ML & Smith 2010
see also Dalal, Dore, Huterer, Shirokov 2007; Grossi  et al 2009;  Kang, Norberg, Silk 2009; 
Pillepich, Porciani, Hahn 2009 ; Desjacques and Seljak 2010; Wagner, Verde, Boubekeur 2010

(with caveats about how you 
approximate the PDF)



Pros: ingredients just <!M
2>, <!M

3>, <!M
4> -- 

insensitive to “shape” of bispectrum trispectrum. in 
principle <!M

3>, <!M
4> effects not degenerate in dn/dM 

HALO ABUNDANCE

Cons: cosmology with cluster abundance is really 
hard (mass-observable, degeneracy with %8 etc)



SCALE-DEPENDENT HALO-BIAS
a dark matter halo forms when !$/$ is larger than the collapse threshold

!$/$
!c



a dark matter halo forms when !$/$ is larger than the collapse threshold

!$/$
!c

!c-!l

!$/$

which is easier to reach on top of a long 
wavelength density perturbation

SCALE-DEPENDENT HALO-BIAS



a dark matter halo forms when !$/$ is larger than the collapse threshold

!$/$
!c

!c-!l

!$/$

which is easier to reach on top of a long 
wavelength density perturbation

so the number of halos fluctuates 
depending on !l !n =    !l . . . #n

#!

SCALE-DEPENDENT HALO-BIAS



the number of halos fluctuates depending on !l 

BUT with fNL, the small-scale 
power fluctuates also 

depending on #l

 Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008

Dalal, Doré, Huterer, Shirokov 2007

!c-!l

!$/$

SCALE-DEPENDENT HALO-BIAS



the number of halos fluctuates depending on !l 

 Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008

Dalal, Doré, Huterer, Shirokov 2007

!c-!l

!$/$
BUT with fNL, the small-scale 

power fluctuates also 
depending on #l

   =    !l + 4fNL    #l. . . 
#n
#Ps

#n
#!

!n

SCALE-DEPENDENT HALO-BIAS



the number of halos fluctuates depending on !l 

 Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008

Dalal, Doré, Huterer, Shirokov 2007

!c-!l

!$/$

)2#l! 4!G !l
Poisson’s

BUT with fNL, the small-scale 
power fluctuates also 

depending on #l

   =    !l + 4fNL    #l. . . 
#n
#Ps

#n
#!

!n

#n
#Ps

#n
#!( )4fNL

k2+ !l~!n

SCALE-DEPENDENT HALO-BIAS



a dark matter halo forms when !$/$ is larger than the collapse threshold

!c-!l

!$/$

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011

!n =    !l + 18gNL       #l. . . 
so the number of halos fluctuates 

depending on !l and #
#n
#!

with gNL non-Gaussianity, the 
small-scale skewness 
fluctuates with #l

#n
#S3

SCALE-DEPENDENT HALO-BIAS



a dark matter halo forms when !$/$ is larger than the collapse threshold

!c-!l

!$/$

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011

)2#l! 4!G !l

" (    + 18gNL     /k2 ) !l(k) . . . 

bias depends on Fourier scale k

!n =    !l + 18gNL       #l. . . 
so the number of halos fluctuates 

depending on !l and #
#n
#!

#n
#S3

with gNL non-Gaussianity, the 
small-scale skewness 
fluctuates with #l

#n
#!

#n
#S3

SCALE-DEPENDENT HALO-BIAS



e.g. Creminell, D’Amico, Musso, Noreña 2011

#(x)=#G(x)+ fNL (#G(x)2-<#G
2>) + gNL(#G(x)3-#G<#G

2>)

local non-Gaussianity

bfNL,gNL (k) ! b +                  fNL,gNL x constant
k2

scale dependent halo bias

impossible to generate 
with single field inflation!

SCALE-DEPENDENT HALO-BIAS

(Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011; Scoccimarro et al 2012)
Smith, Ferraro, ML 2011



precise values of fNL, gNL will require care -- but seeing 1/k2  is 
the most exciting part

e.g. Creminell, D’Amico, Musso, Noreña 2011

#(x)=#G(x)+ fNL (#G(x)2-<#G
2>) + gNL(#G(x)3-#G<#G

2>)

local non-Gaussianity

bfNL,gNL (k) ! b +                  fNL,gNL x constant
k2

scale dependent halo bias

impossible to generate 
with single field inflation!

observational systematics may be hard! 

SCALE-DEPENDENT HALO-BIAS

(Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011; Scoccimarro et al 2012)
Smith, Ferraro, ML 2011



SCALE-DEPENDENT HALO-BIAS

Dalal, Doré, Huterer, Shirokov 2007

 Pillepich, Porciani, Hahn 2008; Desjacques, Seljak, Iliev 2008; Grossi et al 2009 
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Smith, Ferraro, ML 2011
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scales as 1/k2

Shandera, Dalal, Huterer 2010

Figure 1: Halo bias bmi(k) for selected redshifts and halo mass bins, estimated from N -body simu-

lations as described in Appendix A. The curves are the predicted form in Eq. (27), with b0 treated

as a free parameter which is fit from data.
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bias coefficient for gNL in terms of mass

contrast w/fNL where coefficient in terms of bias

bgNL(k)= b +              
#lnn(M)
#fNL

3gNL

k2

bfNL(k)= b +                 
2 !c fNL (b-1)

k2

SCALE-DEPENDENT HALO-BIAS
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contrast w/fNL where coefficient in terms of bias

bgNL(k)= b +              
#lnn(M)
#fNL

3gNL

k2

bfNL(k)= b +                 
2 !c fNL (b-1)

k2

we have a fit for gNL in terms of bias:

bgNL(k) ! b +gNL                   
non-linear function(b)

k2

form will depend on selection of population in M, z
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contrast w/fNL where coefficient in terms of bias

bgNL(k)= b +              
#lnn(M)
#fNL

3gNL

k2

bfNL(k)= b +                 
2 !c fNL (b-1)

k2

we have a fit for gNL in terms of bias:

bgNL(k) ! b +gNL                   
non-linear function(b)

k2

form will depend on selection of population in M, z

SCALE-DEPENDENT HALO-BIAS

Smith, Ferraro, ML 2011

but! exact 1/k2 not 
necessarily expected!
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generalized local ansatz

〈#(kS)#(-kS-kL)#(kL)〉! *%(kS)kS
-3 kL

-3

〈#(kS)#(-kS-kL)#(kL)〉 ! *%"(kS) *%"(kL)kS
-3 kL

-3

Shandera, Dalal, Huterer 2010
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Figure 1: Left panel: The effective amplitude of the non-Gaussian bias on small scales (f eff
NL) as

a function of the object’s mass for two modifications of the local ansatz. The blue short dashed
lines are the single field model (only ξs(k) different from one) and the red long dashed lines are
the multi-field (only ξm(k) different from one). The upper lines show the effect of non-Gaussianity
that increases on small scales, with n

(s)
f = 0.6 or n(m)

f = 0.3 while the lower lines have n
(s)
f = −0.6

or n
(m)
f = −0.3. All curves are normalized to ξs,m(kp) = 1. Right panel: A comparison of the

correction to the bias of objects of mass 4.4× 1014 h
−1

M⊙. The solid black curve is the usual local
ansatz, the blue long dashed curve is the single-field model with n

(s)
f = 0.6, the red short dashed

curve is the multi-field scenario with n
(m)
f = 0.3, and the purple dot-dashed curve is the multi-field

scenario with n
(m)
f = −0.3. Again, ξs,m(kp) = 1.

these combine into the mass-dependent coefficient of the scale-dependent term, f eff
NL, and

the power of k that appears in the denominator. In other words, phenomenologically we

have (in the small k limit)

∆bNG(k,M) ∝ f
eff
NL(M)

k
2−n(m)

f

. (3.17)

More precisely (and in terms of the Gaussian Eulerian bias bEG)

∆bNG(k,M) = f
eff
NL(M,n
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(m)
f , kp)
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�n(m)
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where

f
eff
NL(M,n

(s)
f , n

(m)
f , kp) = ξs(kp)[ξm(kp)]

2FR(k � 1, n(s)
f , n

(m)
f ) . (3.19)

There is some suggestion, both from simulations and from analytic considerations,

that there is an additional factor multiplying the expression above for ∆bNG even in the

case of constant local non-Gaussianity. For example, Giannantonio and Porciani [91] have

suggested a multiplication by a factor

q = 1 +
∆bI

b
E
G − 1

(3.20)
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quasi-single field models?

〈#(kS)#(-kS-kL)#(kL)〉! <P#(kS)#(kL)> ! fNL kS
-3 kL

-3 kL

kS( )
3/2-(

b(k) ! k-2+3/2-( 
fNL(M) ! fNL ks

-3/2+( 

kS ! ($/M)1/3
0 % ( % 3/2



MORE:

“squeezed” limit 
kS

kS-kL

P#(ks)

#(kL)
kL

scale-dep bias only probes a particular configuration of 
bispectrum (or higher)

and, it’s one that vanishes in single-field models



MORE:

“squeezed” limit 
kS

kS-kL

P#(ks)

#(kL)
kL

scale-dep bias only probes a particular configuration of 
bispectrum (or higher)

FULL bispectrum, trispectrum sensitive to more general 
models, contains more information

k’

k’’

k

B(k1,k2,k3) T(k1,k2,k3, k4)

k

k’

k’’’

k’’

and, it’s one that vanishes in single-field models



 Summary
Lots of different kinds of non-Gaussian initial conditions

qualitatively different shapes & scalings of non-
Gaussianity from qualitatively different models

halo abundance sensitive to local statistics of !M

halo clustering (scale-dep bias) probes squeezed limits 
of bispectrum, trispectrum -- power to rule out single-
field inflation

analytic description for the halo mass function looks 
good compared with N-body so far

Analytic descriptions of halo bias agree well with sims



First theory breakout session summary:

“squeezed” limit 
kS

kS-kL

P#(ks)
kL

scale-dep bias only probes a particular configuration of 
bispectrum (or higher)

Every bispectrum has a squeezed limit
It just might be very small.....

Seeing anything in scale-dep. bias/squeezed limit is 
indicative of new physics incredibly exciting 

the current limits are already interesting



First theory breakout session summary:
Since every bispectrum (i.e. models other than fNL local) has a squeezed 

limit, scale dependent bias constrains a broad space of theories.

 However, scale-dependent bias in other theories will not have the 
usual form: b0+2!c fNL(b0-1)/k2

more powerful to fit:
b(k)=b0+f(M)/k+

where f(M) is a function of mass (that can be calculated from a non-
Gaussian model) that is proportional to the amplitude of non-

Gaussianity (e.g. # fNL, gNL) and it’s probably safe to assume 0 % + % 3

special values of +:

+ = 2 : exact local model (fNL, gNL)
+ = 2 ± , : two fields contributing to primordial perturbations

 0 % + % 2 : quasi-single-field

+ = 3: modified initial state



First theory breakout session summary:

AGAIN, seeing anything in scale-dep. bias/squeezed limit is 
indicative of new physics incredibly exciting 

the current limits are already interesting

There are non-Gaussian models that have vanishingly small 
squeezed limits (and therefore vanishingly small scale-dep 
bias) BUT detectably large signals in other, non-squeezed 
configurations.  SO we should continue to explore other 
observables (e.g. galaxy bispectrum in non-squeezed 

configurations)

A detection would mean there are other signatures to go 
after and help distinguish between models


