Systematics: Experience from BOSS Ashley J Ross (University of Portsmouth)

Anderson et al. arXiv: 1203.6904

SDSS

Lauren Anderson¹, Eric Aubourg², Stephen Bailey³, Dmitry Bizyaev⁴, Michael Blanton⁵, Adam S. Bolton⁶, J. Brinkmann⁴, Joel R. Brownstein⁶, Angela Burden⁷, Antonio J. Cuesta⁸, Luiz N. A. da Costa^{9,10}, Kyle S. Dawson⁶, Roland de Putter^{11,12}, Daniel J. Eisenstein¹³, James E. Gunn¹⁴, Hong Guo¹⁵, Jean-Christophe Hamilton², Paul Harding¹⁵, Shirley Ho^{3,14}, Klaus Honscheid¹⁶, Eyal Kazin¹⁷, D. Kirkby¹⁸, Jean-Paul Kneib¹⁹, Antione Labatie²⁰, Craig Loomis²¹, Robert H. Lupton¹⁴, Elena Malanushenko⁴, Viktor Malanushenko⁴, Rachel Mandelbaum^{14,21}, Marc Manera⁷, Claudia Maraston⁷, Cameron K. McBride¹³, Kushal T. Mehta²², Olga Mena¹¹, Francesco Montesano²³, Demetri Muna⁵, Robert C. Nichol⁷, Sebastián E. Nuza²⁴, Matthew D. Olmstead⁶, Daniel Oravetz⁴, Nikhil Padmanabhan⁸, Nathalie Palanque-Delabrouille²⁵, Kaike Pan⁴, John Parejko⁸, Isabelle Pâris²⁶, Will J. Percival⁷, Patrick Petitjean²⁶, Francisco Prada^{27,28,29}, Beth Reid^{3,30}, Natalie A. Roe³, Ashley J. Ross⁷, Nicholas P. Ross³, Lado Samushia^{7,31}, Ariel G. Sánchez²³, David J. Schlegel^{*3}, Donald P. Schneider^{32,33}, Claudia G. Scóccola^{34,35}, Hee-Jong Seo³⁶, Erin S. Sheldon³⁷, Audrey Simmons⁴, Ramin A. Skibba²², Michael A. Strauss²¹, Molly E. C. Swanson¹³, Daniel Thomas⁷, Jeremy L. Tinker⁵, Rita Tojeiro⁷, Mariana Vargas Magaña², Licia Verde³⁸, Christian Wagner¹², David A. Wake³⁹, Benjamin A. Weaver⁵, David H. Weinberg⁴⁰, Martin White^{3,41,42}, Xiaoying Xu²², Christopher Yeche²⁵, Idit Zehavi¹⁵, Gong-Bo Zhao^{7,43}

Manera et al. arXiv:1203.6609 Reid et al. arXiv:1203.6641 Ross et al. arXiv:1203.6499 Sanchez et al. arXiv:1203.6616 Tojeiro et al. arXiv:1203.6565

The Matter at Hand

Ashley J Ross

KICP NG Workshop

April 20th, 2012

Outline

BOSS data samples
 photoz and specz

- Observational systematics
 - Corrections
- f_{NL} measurements

BOSS-trained SDSS DR8 Photozs

 Used over 100,000 BOSS
 spectra

SDSS

Over 1,000,000
 photozs over
 10,000 sq degrees

Ross, A. J. et al. 2011 (ArXiv:1105:2320) Ho, S. et al. 2012 (ArXiv:1201:2137) Seo, H. et al. 2012 (ArXiv: 1201:2172) de Putter, R. et al. 2012 (ArXiv: 1201:1909)

KICP NG Workshop

April 20th, 2012

SDSS DR9 BOSS Specz 'CMASS' Sample

Ross

SDSS

- Targeted I million galaxies
 8600 sq degrees of NGC
 3100 sq degrees of SGC
- DR9 footprint 3345 sq. deg 21% in Southern galactic cap
- 270,000+ redshifts 0.43<z< 0.7
- Redshift completeness >98%
- Public July 2012

KICP NG Workshop

April 20th, 2012

Friday, 20 April 2012

Ashley

SDSS DR9 BOSS Specz 'CMASS' Sample

Targeted I million galaxies
 8600 sq degrees of NGC
 3100 sq degrees of SGC

 DR9 footprint 3345 sq. deg 21% in Southern galactic cap

- 270,000+ redshifts 0.43<z< 0.7
- Redshift completeness >98%
- Public July 2012

KICP NG Workshop

April 20th, 2012

Friday, 20 April 2012

Ashley

Ross

Observational Systematics

- Star/galaxy/quasar
- Use probabilities
- Galactic foregrounds
 - Stars, Galactic Extinction
- Observing conditions
 - Seeing, Sky Background, Airmass
- Photometric offsets, varying dust law?
 See Schlafly et al. (2011a,b)
- Obtaining redshifts
 Ashley J Ross
 KICP NG Workshop

April 20th, 2012

SDSS

Stars

- ~3% stellar contamination → n_{CMG} should increase with n_{star}
- Opposite is observed
- "removing" stellar contamination → huge anticorrelation
- NOT observed in previous SDSS data releases

KICP NG Workshop

Ashley | Ross

Stars

- ~3% stellar contamination →
 n_{CMG} should increase with n_{star}
- Opposite is observed
- "removing" stellar contamination → huge anticorrelation
- NOT observed in previous SDSS data releases

April 20th, 2012

Ashley | Ross

Stars Occult Area

Correcting for Stars

General Solution

- If you can make a map
- I) Assume intrinsic cross-correlations are
 0, subtract measured contribution
- 2) Assume intrinsic no local relationship, weight appropriately

KICP NG Workshop

April 20th, 2012

Source of the second se

$$\delta_g^{\mathrm{o}} = \delta_g^t + \sum_i \epsilon_i \delta_i.$$

 $w(heta) = \langle \delta_i \delta_j \Theta_{i,j}(heta)
angle$

Assume true cross-correlation = 0

$$egin{aligned} &w_g^t(heta) = w_g^o(heta) - \sum_i \epsilon_i^2 w_i(heta) - \sum_{i,j>i} 2\epsilon_i \epsilon_j w_{i,j}(heta) \ &w_{g,i}^o = \sum_j \epsilon_j w_{i,j}(heta) \end{aligned}$$

Ashley J Ross

KICP NG Workshop

April 20th, 2012

Source of the second se

$$\delta_g^{\mathrm{o}} = \delta_g^t + \sum_i \epsilon_i \delta_i.$$

 $w(\theta) = \langle \delta_i \delta_j \Theta_{i,j}(\theta) \rangle$

Assume true cross-correlation = 0

$$w_{g}^{t}(\theta) = w_{g}^{o}(\theta) - \sum_{i} \epsilon_{i}^{2} w_{i}(\theta) - \sum_{i,j>i} 2\epsilon_{i}\epsilon_{j}w_{i,j}(\theta)$$
$$w_{g,i}^{o} = \sum_{j} \epsilon_{j}w_{i,j}(\theta)$$
$$A = w_{g,sys}/w_{sys}$$
$$C = A^{2}w_{sys} \sim (w_{g,sys}^{2}/w_{sys})$$

KICP NG Workshop

April 20th, 2012

Friday, 20 April 2012

SDSSIII Auto-/crosscorrelations

Ashley J Ross

KICP NG Workshop

April 20th, 2012

$w(\theta)$ for photoz shells

- fit for bias with basic ACDM model
- with corrections: χ²/d.o.f = 0.79, 1.8, 0.99, 1.0
- without
 corrections: χ²/ d.o.f = 0.99, 3.9, 7.0, 6.4

Spectroscopic Sample

SDSS

•Again went through all potential systematics •Most important: Correct for presence of stars via weights linear fit to $n_g(n_{star})$ relationship •Extensive test on mocks: indicate unbiased and ~10% uncertainty on size of correction

Spectroscopic Sample

SDSS

•Again went through all potential systematics Most important: Correct for presence of stars via weights linear fit to $n_g(n_{star})$ relationship •Extensive test on mocks: indicate unbiased and ~10% uncertainty on size of correction

Spectroscopic Sample

SDSS

•Again went through all potential systematics Most important: Correct for presence of stars via weights linear fit to $n_g(n_{star})$ relationship •Extensive test on mocks: indicate unbiased and ~10% uncertainty on size of correction

Spectroscopic Sample

DSS

•Again went through all potential systematics •Most important: Correct for presence of stars via weights linear fit to $n_g(n_{star})$ relationship •Extensive test on mocks: indicate unbiased and ~10% uncertainty on size of correction

Clustering Estimators

Ashley J Ross Friday, 20 April 2012

SDSS

KICP NG Workshop

April 20th, 2012

f_{NL} from P(k)

0.06 marginalizing over $S(P_{no weights} - P_{star})$ no systematics correction fiducial (P_{star}) Gaussian prior $S=0\pm0.1$ χ^2_{min} : 95%: $13.04 - 145 < f_{NL} < 325$ p(f_{NL}) (normalized) $16.0 -5 < f_{NL} < 375$ 32.3 95<f_{NL}<385 NA $-45 < f_{NL} < 365$ 0 0 200 400 -200 f_{NL}

SDSSII

• Using P(k) $\Delta b_{NG}(k) \propto f_{NL} \frac{3(b_{halo} - 1)\Omega_m \delta_c}{k^2 T(k) D(z)} \left(\frac{H_o}{c}\right)^2$

- (II deg of freedom)
- window quite important

f_{NL} from P(k)

SDSS

• Using P(k) $\Delta b_{NG}(k) \propto f_{NL} \frac{3(b_{halo} - 1)\Omega_m \delta_c}{k^2 T(k) D(z)} \left(\frac{H_o}{c}\right)^2$

- (II deg of freedom)
- window quite important

f_{NL} from P(k)

SDSS

• Using P(k) $\Delta b_{NG}(k) \propto f_{NL} \frac{3(b_{halo} - 1)\Omega_m \delta_c}{k^2 T(k) D(z)} \left(\frac{H_o}{c}\right)^2$

- (II deg of freedom)
- window quite important

SDSS Comparison of Estimators

 photoz doing significantly better than spec • (spec has 1/3 angular

footprint)

SDSSII

Conclusions

- (faint) foreground stars present challenge for all forthcoming surveys
- Systematic effect pretty degenerate with fNL
 - ...but utilizing all of the information, robust constraints can be obtained
 - (BAO position appear robust to observational systematics)

KICP NG Workshop

April 20th, 2012

Model Correlation

- Functions
 redshift space correlation function (Halofit w/ linear RSD)
- w(θ), project over n(z) $w(\theta) = \int dz_1 \int dz_2 n(z_1) n(z_2) \xi^s(\mu, r_{ev}(\theta, z_1, z_2))$ $r_{ev}(\theta, z_1, z_2) = \sqrt{\chi^2(z_1) + \chi^2(z_2) - 2\chi(z_1)\chi(z_2)\cos\theta}$

LBNL

April 1st, 2011

 $\mu = (\chi(z_1) - \chi(z_2)) / r_{ev}$

Ashley | Ross

Redshift Space Distortions (RSD)

Intrinsic velocities of galaxies imply redshift space is distorted from real-space

DAMTP

May 9th, 2011

- Small scales finger of God effect
- Large scales infall onto clusters

Ashley J Ross

Redshift Space

DAMTP May 9th, 2011

Friday, 20 April 2012

Ashley J Ross

Redshift Space Distortions (RSD)

Intrinsic velocities of galaxies imply redshift space is distorted from real-space

DAMTP

May 9th, 2011

- Small scales finger of God effect
- Large scales infall onto clusters

Ashley J Ross

Real/Redshift Space Clustering

Real/Redshift Space Clustering

Redshift Space Clustering

Large scale distortions can be modeled with linear theory: $P(k,\mu) = (1 + f\mu^2)^2 P(k)$ $\mu = \cos(\theta); f = d\ln(D)/d\ln(a) \sim \Omega_{matter}^{\gamma}$

• GR predicts $\gamma = 0.557$

DAMTP

May 9th, 2011

Redshift Space Clustering

RSD/ Dark Energy

 $f(z) = d\ln(D)/d\ln(a)$

$$\sigma_{8,mass}(z) = \sigma_{8,mass}(0)D(z)$$

Friday, 20 April 2012

RSD with Photozs?

Projections for Dark Energy Survey

Measure for with DES?

Redshift Space Distortions (RSD)

- Intrinsic velocities of galaxies imply redshift space is distorted from real-space
- Small scales finger of God effect
- Large scales infall onto clusters

Redshift Space

Friday, 20 April 2012

Redshift Space Distortions (RSD)

- Intrinsic velocities of galaxies imply redshift space is distorted from real-space
- Small scales finger of God effect
- Large scales infall onto clusters

Redshift Space Clustering

 $P(k,\mu) = (1 + \beta\mu^2)^2 P(k)$ $\mu = \cos\theta; \ \beta = f/b; \ f = d\ln(D)/d\ln(a) \sim \Omega_m(z)^{0.557}$

RSD/ Dark Energy

 $f(z) = d\ln(D)/d\ln(a)$

$$\sigma_{8,mass}(z) = \sigma_{8,mass}(0)D(z)$$

Friday, 20 April 2012

Optimal Galaxy Sample?

Bias, redshift error, and median redshift are important factors

Assumes 10 million galaxies per ∆z = 0.066 (1+z)
I/8th sky cover

Combining 2nd and 3rd-order clustering

Produces tighter cosmological constraints
 \$\overline{\overli

• $\bar{\omega}_N(\theta) = \langle \delta^N \rangle_c \ s_N(\theta) = \frac{\omega_N}{\bar{\omega}_2^{N-1}}$

Measuring σ_8

σ₈:rms mass fluctuation at 8 h⁻¹ Mpc
 ⟨δ²_{DM}⟩ ∝ σ²₈ so b₁ ∝ 1/σ₈
 This makes it nuisance parameter for 2-point measurements

- Adding s₃:
 - Measure s_3 for galaxies, determine $c_2(\sigma_8)$

• Turn δ_g to δ_{DM} with assumed b_1 and b_2 , measure corrected ϖ_2 , match to model $\varpi_{2,DM}$, yields separate $c_2(\sigma_8)$

SDSS LRG Catalog

- SDSS DR5 LRGs with MegaZ-LRG color cuts (Collister et al. 2007) and ANNz for photozs and star/galaxy separation
- Over I.6 million LRGs with 0.4 < z < 0.7 and median redshift of 0.52
 - Split into three distinct redshift ranges with median redshifts of 0.47, 0.53, and 0.61

LRG Results

Measured $\sigma_8 = 0.78 \pm 0.08, 0.80 \pm 0.09$, and 0.80 ± 0.09

- Combine for $\sigma_8 = 0.79$ ± 0.05
- Find b₁ = 1.47 ± 0.09, 1.65 ± 0.09, 1.80 ± 0.10
 c₂ = 0.09 ± 0.04, 0.09 ± 0.05, 0.09 ± 0.03

LRG Results

Testing on Millennium Simulation

- *M_r* < -23 and *B R* > 1.4
 from Blaizot et al. (2005)
- Found $\sigma_8 = 0.898 \pm 0.062$
- (Input is $\sigma_8 = 0.9$)

