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Gaussianity is a consequence of:

i) inflaton a single scalar field
ii) slowly rolling
iii) in vacuum state
iv) with canonical kinetic terms

which implies for it a bispectrum,

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias 
at large scales (Dalal et al 2008),

with b~1/k^2 at low-k. Thus the power spectrum of galaxies is sensitive to fnl!!

B = 2fNLP1P2 + cyc.

Φ = φ + fNLφ2

if we relax i) we have for the Bardeen potential,

b1(k) = b10 + ∆b1(k, fNL)

−10 < f local
NL < 74

Primordial Non-Gaussianity from Inflation
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Beyond Local Primordial Non-Gaussianity

- Within single-field inflationary models, we can break Gaussianity by 
introducing non-canonical kinetic terms, leading to the so-called equilateral 
and orthogonal shapes for the primordial bispectrum. 

For example, the equilateral model has a Bardeen potential bispectrum,

(permutations are understood), whereas the orthogonal model reads

(6fNL)−1Bequil = −P1P2 − 2(P1P2P3)2/3 + P 1/3
1 P 2/3

2 P3

(6fNL)−1Bortho = −3P1P2 − 8(P1P2P3)2/3 + 3P 1/3
1 P 2/3

2 P3

−214 < f equil
NL < 266

−410 < fortho
NL < 6
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Generic Predictions in Peak-Background Split

We are interested in establishing as rigorously as possible the validity of the 
local PNG bias formula

∆b1(k, fNL) =
2fNL

M(k)
(b10 − 1)δc

and generalizing it to arbitrary (non-local) PNG. Some issues in derivations,

- proper treatment of filter and transfer function effects

- dependence on primordial bispectrum (cannot be just a number)

- peaks in phi vs peaks in delta approximations

∇φ2 = 2φ∇2φ + 2∇φ ·∇φ ≈ 2φ∇2φ?

simulations suggest a somewhat smaller amplitude (depending on halo def)
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∆b(k) =
∂σ2

�
IB(k)F0

�

M(k)F0

IB(k, R) ≡ 1
Pφ(k)

�
BδRδRφ(q,k− q,−k) d3q

A full calculation of the PBS change in bias due to arbitrary PNG bispectrum 
gives,

Note that, unlike the GW86 formula, what matters is the *cross* bispectrum. 
For local PNG, expanding in powers of k small (with higher-order corrections 
coming from filter, transfer function, grad-phi terms, etc

IB(k = 0, R) ≈ 4fNL σR
2(m) +O(k2)

∆b(k) =
4fNL

M(k)
∂ln σ2 ln(σ2F0) <

2fNL

M(k)
δc

(∂F/∂δ�)0
F0

=
2fNL

M(k)
δc(b1 − 1)

which gives
non-markovian

the precise relationship has to be obtained from the first-crossing prob F0.
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In terms of the mass function,

∆b1 =
∂m

�
IB(k, m)

�
d n

d ln m

� �
dσ2

m
dm

�−1�

M(k)
�

d n
d ln m

�

note that, without assuming markovian + universality, this is more general than 
the usual (b-1) amplitude.

Given a *Gaussian* mass function (not necessarily universal, e.g. measured 
from simulations), we can compute the scale dependent bias.

Same for quadratic bias,

∆b2 =
∂σ2

m
[IB(k1) b(1)

1L F0]
M(k1)F0

+ k1 ↔ k2

∆b2 =
∂m

�
IB(k1) b(1)

1L

�
dn

d ln m

� �
dσ2

m
dm

�−1�

M(k1)
�

dn
d ln m

� + k1 ↔ k2
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10M CPU Hours 

with 
A. Berlind,

C. McBride,
M. Manera,
J. Gardner,
M. Busha,

R. Wechsler,
F. van den Bosch
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Name Sample Lbox Npar mpar Nrealiz

Oriana (G) LRG
+Main -22

2400 1280^3 4.57E+11 42

Oriana 
fnl_local=+100

LRG
+Main -22

2400 1280^3 4.57E+11 40

Oriana 
fnl_equi=-400

LRG
+Main -22

2400 1280^3 4.57E+11 30

Oriana 
fnl_orto=-400

LRG
+Main -22

2400 1280^3 4.57E+11 37

Carmen Main -21 1000 1120^3 4.98E+10 42

Esmeralda Main -20 640 1250^3 9.31E+09 50

Consuelo Main -19-18 420 1400^3 1.87E+09 50

LasDamas Simulations

Nmocks=4 x Nrealiz,    2LPT ICs,   Gaussian Mocks available at http://lss.phy.vanderbilt.edu/lasdamas/
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z=1

z=0
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non-local PNG Initial Conditions in Simulations

- In single-field inflationary models, we are instead interested in models that 
correspond to non-local PNG (due to non-canonical kinetic terms). For 
example, the equilateral model has a Bardeen potential bispectrum,

(permutations are understood), whereas the orthogonal model template reads

(6fNL)−1Bequil = −P1P2 − 2(P1P2P3)2/3 + P 1/3
1 P 2/3

2 P3

(6fNL)−1Bortho = −3P1P2 − 8(P1P2P3)2/3 + 3P 1/3
1 P 2/3

2 P3

We are interested in generating such bispectra from quadratic (non-local)
models, i.e.

Φ = φ + fNL K[φ, φ]

where K is the appropriate non-local quadratic kernel that generates the 
desired bispectrum. For simplicity, here we assume scale-invariance.

−214 < f equil
NL < 266

−410 < fortho
NL < 6
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K[φ, φ] = aφ2 + b ∂−1(φ ∂φ) + c∇−2(φ ∇2φ) + d∇−2(∂φ)2 + e∇−2∂−1(φ∇2∂φ) + f ∇−2∂−1(∇2φ ∂φ)

- Introduce some handy non-local operators

∂φ ≡
�
−∇2φ(x) ≡

�
e−ik·x k φ(k) d3k

∇−2A(x) ≡ −
�

e−ik·x
� 1

k2

�
A(k) d3k

∂−1A ≡
�
−∇−2A ≡

�
e−ik·x

�1
k

�
A(k) d3k

regularity constraints (one-loop corrections to the power spectrum must 
preserve scale-invariance in the IR) restrict the free parameters that leave the 
bispectrum invariant.  Note these kernels have correct exchange symmetry.

Then the EQ and ORT bispectra templates can be generated by,
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ΦEQ = φ + fNL

�
− 3φ2 + 4 ∂−1(φ ∂φ) + 2∇−2(φ ∇2φ) + 2∇−2(∂φ)2

�
,

ΦORT = φ + fNL

�
− 9φ2 + 10 ∂−1(φ ∂φ) + 8∇−2(φ ∇2φ) + 8∇−2(∂φ)2

�
,

More precisely,

2LPT Code to generate non-local (and local) PNG publicly available

http://cosmo.nyu.edu/roman/2LPT/

Algorithm works for any bispectrum template that is sum of factorizable

B �
�

g1(k1)g1(k2)g1(k3)

Overhead over local fnl is only about 35% (same Npar ln Npar scaling)
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FIG. 1. The difference in dark matter reduced bis-
pectrum Q from that in the Gaussian initial condi-
tions case at redshift z = 0.97 for triangles with sides
k1 = 0.06 h Mpc−1 and k2 = 1.5 k1 as a function of angle
θ between k1 and k2. The deviations seen in the N-body
simulations agree with the expectations from linear per-
turbation theory evolution of the primordial bispectrum
(solid) for all three models considered: orthogonal (blue
pentagons, fNL = −400), local (red triangles, fNL = 100)
and equilateral (green squares, fNL = −400), from top
to bottom at θ = 0, π.

Our simulations are part of the LasDamas (Large

Suite of Dark Matter Simulations) collaboration [41]

runs, extended to PNG models. The cosmological

parameters are Ωm = 0.25, Ωb = 0.04, ΩΛ = 0.75,

h = 0.7, ns = 1 and σ8 = 0.8. For this paper we

present results based on 12 realizations of local (with

fNL = 100), equilateral (fNL = −400) and orthogo-

nal (fNL = −400) models run on a 2.4 h−1 Gpc box

with 12803 particles, using the Gadget2 code [42].

For each PNG model we thus have a total volume of

166( h−1 Gpc)3, the largest to date, which will allow

us to test theoretical predictions of large-scale bias

to a greater accuracy than before. For such choices

of fNL the skewness of the primordial density field

is positive for the local and orthogonal case, while

negative for the equilateral model. See [43] for a dis-

cussion of higher-order moments in these simulations

and mock galaxy catalogs built from them.

In Figure 1 we show the difference in the matter

density reduced bispectrum,

Q ≡ B

(P1P2 + P2P3 + P3P1)
, (36)

in each of the three models from the Gaussian initial

conditions case at z = 0.97 for triangles with sides

k1 = 0.06 h Mpc
−1

and k2 = 1.5 k1 as a function of

angle θ between k1 and k2. The symbols (with er-

ror bars obtained from the scatter among 12 realiza-

tions) denote the measurements, while the solid lines

correspond to the predictions of linear perturbation

theory evolution of the primordial bispectrum for

each of the models. We see a very good agreement,

which is further evidence that the initial conditions

in each case have been correctly generated.

Our 2LPT-PNG initial conditions algorithm, be-

ing a sum of separable terms for the kernel, is very

efficient. For non-local models the initial condition

generation takes only 35% longer than for local mod-

els, which for Npar = 12803 particles takes about 5

minutes in 320 cpus. This is several orders of mag-

nitude faster than summation over modes methods

that use non-separable kernels recently proposed in

the literature [37, 39], which scale as N2
par (as op-

posed to Npar lnNpar in our case).

III. THE PEAK-BACKGROUND SPLIT

A. Excursion-Set Basics

We now turn to a derivation of the expected clus-

tering in generic PNG models. For this purpose, it

is useful to briefly review the peak-background split

(PBS) argument that allows us to calculate the bias

of collapsed objects [44, 45]. We will comment on

how our approach differs from other accounts in the

literature below, and also contrast the PBS predic-

tions with local bias models.

In the excursion-set formalism [46], halo formation

can be described as a random walk of the smoothed

linear density field δ as the smoothing radius goes

from very large (infinitesimal variance σ2, and thus

tiny δ) to crossing the linear threshold for collapse

δc at some finite smoothing radius (which defines

8

forthNL = −400

fequi
NL = −400

f loc
NL = 100

Bispectrum

Saturday, April 21, 2012



1�1013 2�1013 5�1013 1�1014 2�1014 5�1014 1�1015
0.75

0.80

0.85

0.90

0.95

1.00

nZA49/n2LPT49

f loc
NL = 100

z = 1

M⊙/h

2LPT zi=49 equivalent to:

- ZA zi=2040 (if measuring MF at z=1)
- ZA zi=4228 (if measuring MF at z=0)
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This modification of the O(f2
NL) quadratic bias pa-

rameter may be probed through measurements of

the halo bispectrum as a function of triangle shape.

It arises from the same effect that can change the

scaling in the low-k limit for the linear bias, from

contributions of the K(�) kernel that couples two

short φs modes.

Finally, note that these results are for the La-
grangian quadratic bias parameters, what we need

to compare against simulations is to compute their

Eulerian counterparts. This is a standard procedure

usually done in the spherical collapse approximation

(see e.g. [28, 29, 66]) or, more accurately, full per-

turbation theory. We leave this for an upcoming

work where we implement these PBS predictions for

the bispectrum and compare against simulations for

halos and mock galaxy catalogs.

IV. COMPARISON WITH SIMULATIONS

We now contrast our predictions for large-scale

linear bias with measurements in the simulations

discussed in section II E. Since our predictions for

the scale-dependent bias from PNG should be more

widely valid than the standard results based on uni-

versality and Markovian evolution, our primary goal

here is to test for the amplitude of this scale de-

pendence. Previous results in the literature on this

proceed by modeling the full bias factor, including

scale-dependent and independent contributions, see

e.g. [39, 61, 62, 66–70], and there is no consensus

about whether a ‘fudge factor’ is needed to properly

account for the amplitude of scale-dependence for

local PNG.

There are many reasons why this might be the

case. First, not all works used the same halo def-

initions, we explore the dependence on halo defi-

nition below. Second, there is the impact on halo

bias from from transients induced by setting up ini-

tial conditions in the simulations [40]. For exam-

ple, we find that using Zel’dovich initial conditions

instead of 2LPT at z = 49 for local PNG with

fNL = 100 leads to a z = 1 halo power spectrum

(M = 1013 − 1014M⊙/h) that is larger by 14% at

k = 0.003 h Mpc
−1

and 3% at k >∼ 0.05 h Mpc
−1

.

These transients also induce artificial violations of

universality.

From the theoretical point of view, deviations

FIG. 4. The bias for FOF0.156 halos as a function of

scale for Gaussian and local, orthogonal and equilateral

PNG initial conditions. Since cosmic variance is domi-

nated by its Gaussian contribution, we only show error

bars on the local PNG case for clarity. The equilateral

and Gaussian case are very close to each other, whereas

the orthogonal template (fNL = −400, blue dashed lines)

is in between them and local (fNL = 100, red dotted) for

significantly biased objects (top two panels), but below

the Gaussian (black solid) and equilateral (fNL = −400,

green solid) case for low-mass halos at z = 0.

from the standard predictions are expected by vi-

olations of Markovianity and universality. While

deviations from the former have not yet been es-

tablished in a precise quantitative way, there is a

significant body of work showing that universality

of the mass function does not hold at the 5-10%

level [40, 52, 53, 71–73] for FOF halos, with more sig-

nificant deviations for spherical overdensity (SO) ha-

los [73]. In addition, the peak-background split cal-

culations for Gaussian initial conditions show sim-

ilar deviations [52, 53, 74]. In this case, however,

there is the extra complication in going from the

bias parameters in the expansion of perturbations

to the bias parameters that appear in the correla-

tors such as the power spectrum, which will differ in

general by renormalizations induced by loop correc-

tions [51, 75, 76].

23

Scale-dependent Bias from Power Spectrum

b(k) =
Pgm

Pmm

Ortho

Equilat

Local

Gaussian
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f loc
NL = 100

bscale−indep = Phm/P −∆btheory
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bscale−indep = Phm/P −∆btheoryFigure 4 shows the bias computed from the halo-

matter power spectrum for one of our choices of halo

definition (FOF halos with linking length equal to

0.156 times the interparticle separation) as a func-

tion of scale for Gaussian and local, orthogonal and

equilateral PNG initial conditions. We see the ex-

pected scale dependence for the local case, a weaker

dependence for the orthogonal template, and close to

Gaussian bias in the equilateral model. Rather than

performing a global fit for the scale-independent and

dependent terms, our approach here is to look at

the residual halo bias in simulations after the scale-

dependent bias predicted by theory is substracted,

i.e. (see Eq. 80 for definition of ∆b1)

bres ≡
� Phm

Pmass

�

Nbody
−∆btheory

1 , (111)

where Phm is the cross-spectrum between halos and

matter. Note that the N-body quantities are for the

PNG model under consideration, i.e. the mass power

spectrum includes PNG. Simulations and perturba-

tion theory calculations show that there are interest-

ing PNG corrections for the mass power spectrum

and bispectrum (see [77–79] and Fig. 1), and even

down to the nonlinear regime [80], but we won’t ex-

plore those here.

If the theoretical model ∆btheory
1 is correct, the

residual bias bres should be consistent with scale in-

dependence, whereas if the theoretical model does

not predict the correct scale-dependent bias bres

will still show residual scale-dependence. Further-

more, provided that bres is consistent with scale-
independence, we can look at the ratio of bres to bG,

the halo bias measured in our Gaussian simulations,

to quantify the magnitude of the PNG corrections

to the scale-independent bias.

To calculate our predictions for ∆btheory
1 , given by

Eq. (76), a mass derivative of the Gaussian mass

function is required. We implement this by doing,

∆b1(k) =

�
i[I21(k,mi)Nh(i)(dσ2

m/dmi)
−1]�

M(k) N tot
h

,

(112)

where Nh(i) denote the number of halos in the

Gaussian realizations in a bin of constant d lnm,

N tot
h =

�
i Nh(i), and the sum is over the mass bins

belonging to the halo sample. The numerical deriva-

tive (denoted by a prime) is taken by doing cen-

FIG. 5. The residual halo bias in local PNG with

fNL = 100 (normalized by the bias measured in Gaus-

sian simulations bG) after the theoretical PBS scale-

dependent bias is accounted for using two predictions:

our result (Eq. 76, blue squares), and the standard pre-

diction (Eq. 85, red triangles). This is for FOF0.2 ha-

los and different halo masses and redshifts. Our pre-

dictions are consistent with scale-independent residuals,

while the standard prediction is not, more so for large-

bias objects. The dashed lines show the expected ratio

of scale-independent biases assuming universality plus

Markovianity.

tral differences from neighboring bins. Care must be

taken at low mass to have a smooth mass function,

when the number of particles in a halo is smaller and

binning effects can induce artificial noise.

In Figure 5, we show bres for FOF halos with

linking length equal to 0.2 times the mean inter-

particle separation with local PNG with fNL = 100

normalized by the halo bias measured in our Gaus-

sian simulations bG (as labeled in each panel), for

different halo masses and redshifts. The symbols

with error bars show bres/bG for two different the-

oretical models, our prediction Eq. (76) shown by

blue squares, and the standard prediction Eq. (85)

denoted by red triangles. We see that our predic-

tion for the scale-dependent bias performs better, as

the residuals are consistent with scale-independence,

24

f loc
NL = 100

FOF0.2
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f loc
NL = 100

bscale−indep = Phm/P −∆btheory

FIG. 6. Same as Fig. 5 but for FOF0.156 halos. Similar

results hold despite a very different halo definition.

whereas the standard prediction is not. The latter

over-predicts the amplitude of the scale-dependent

bias, as a result the residual bias bres is suppressed at

low-k. Figure 6 shows the analogous results for FOF

halos obtained from a linking length 0.156 times

the mean interparticle separation, and shows a sim-

ilar overprediction of the scale dependence by the

standard formula. The magnitude of this deviation

is somewhat larger for FOF0.2 halos, thus the de-

tails depend on halo definition. This is in qualita-

tive agreement with previous studies that required

a “fudge factor” less than unity (typically q � 0.75)

on top of the standard prediction [27, 67, 68, 81].

From the constancy of the ratio bres/bG for

our theoretical prediction (square symbols) we can

read off that there is a PNG correction to scale-

independent bias. The sign of the magnitude is ex-

pected as for local PNG with positive fNL the halo

mass function is enhanced and the scale-independent

bias is thus suppressed compared to the Gaussian

fNL = 0 case. To be more specific, we show using

dashed lines in Figs. 5 and 6 the expected scale-
independent correction to halo bias assuming uni-

versality plus Markovianity, that is (see Eq. 84)

δb(1)
1L ≡ b(1)

1L |PNG − b(1)
1L |G (113)

where

b(1)
1L |PNG =

�
2

δc

��d lnσ2

dm

�−1
∂m ln

� dn

d lnm

�

PNG

(114)

and similarly for the Gaussian case [9, 24, 66–68].

Because this is for fixed mass, we integrate each ex-

pression for the bias at fixed m weighted by the cor-

responding mass function over the desired mass bin.

We see from Figs. 5 and 6 that these predictions,

for a wide set of halos (note the range in Gaussian

bias parameters from 1.38 to 6.23) match rather well

the residual bias from our theoretical prediction, al-

though there are certainly deviations at the percent

level. This fact, together with the flatness of the

residual bias as a function scale, tells us that our

improved treatment leads to a better description of

the amplitude of scale-dependence in local PNG.

In [69] it is found that spherical overdensity (SO)

halos obey the standard formula for scale-dependent

bias more closely than FOF halos. Naively, since

SO halos violate universality more strongly than

FOF halos [73], one would have expected the oppo-

site (particularly at low mass, where the deviations

from PBS bias plus Markovian and universality are

stronger [74]). We don’t currently have SO halos for

the simulations we present here, but would be inter-

esting to check our improved theoretical prediction

against SO halos.

Figure 7 shows the analogous results for the or-

thogonal template with fNL = −400. Our predic-

tion for the amplitude of the k−1 bias (blue squares)

leads again to a residual bias consistent with scale-

independence at low-k. Note from Fig. 4 that in

our low-mass bin at z = 0 (bottom panel) the

scale-dependent bias changes sign, and our predic-

tions correctly match this (second panel from top

in Fig. 7). At high-k, as nonlinear scales begin to

be probed around k � 0.1 h Mpc
−1

there is signifi-

cant evidence for scale-dependent non-Gaussian con-

tributions unlike the local PNG case shown in Fig. 6.

This must be due to the larger value of fNL in the

orthogonal case (fNL = −400 versus fNL = 100 in

the local case). We also show two other predictions,

assuming Markovianity and universality (red trian-

gles) which gives rise to Eq. (86) (as in [61, 62])

25

FOF0.156
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FIG. 7. Residual halo bias for orthogonal PNG with

fNL = −400 after our predictions for scale-dependent

bias are included, Eq. (76), for FOF0.156 halos. The

blue square symbols show our predictions, red triangles

the predictions of Eq. (86), and green pentagons its first

term only. For our predictions, residuals are consistent

with scale-independence at large scales for different halo

masses, redshift and halo definitions.

and in green pentagons its first term only (corre-

sponding to the predictions in [32]). While this is

for FOF0.156 halos, we find very similar results for

FOF0.2 halos. We conclude that our improved for-

mula performs best compared to the alternatives.

Note in this case that the residual bias predicted by

Eq. (114) (shown as dashed lines in Fig. 7 shows

larger deviations than for the local case. This might

be due to non-Markovian corrections proportional to

fNL [60] that are not included in Eq. (114).

Finally, in Fig. 8 we present residual halo bias re-

sults for equilateral PNG for FOF0.156 halos. In

this case we compare our prediction for residual

bias (blue squares) based on subtracting the scale-
dependent term given by the bottom panel in Fig. 3

(and Eq. 89 in the low-k limit) and without substrac-

tion (red triangles) which correspond to the standard

prediction (that includes only scale-independent cor-

rections) and also the PBS prediction when the con-

straint is done on the Φ� field (see Section III F).

FIG. 8. Residual halo bias for equilateral PNG with

fNL = −400 after predictions for scale-dependent bias

are included (blue squares), versus assuming no scale-

dependent contributions as in the standard predictions

(red triangles). The different panels show two halo def-

initions, redshift and halo masses. Note the enhanced

vertical scale in this figure.

We see that the differences are small, although

the measurements are slightly more consistent with

scale-independent residual bias for the prediction

based on the cross-bispectrum BΦΦφ rather than BΦ,

but we don’t consider this statistically significant.

Note that the sign of the scale-dependent effect in

this case depends on halo mass (negative for high

mass and positive for our low mass bin), and for

high-mass at z = 0.97 (with Gaussian bias bG � 6)

the effect is only about 2%, thus for all practical

purposes not very important.

V. ON LOCAL BIAS VS PBS, LOOPS AND
EFFECTIVE THEORY OF BIAS

Let us now concentrate in this section in the sim-

plest case, local PNG, where most results in the lit-

erature have been obtained. We will discuss first the

large-scale behavior (scale-dependent bias at low-k)

which arises from loop corrections in local bias, and

26

bscale−indep = Phm/P −∆btheory

forthog
NL = −400

FOF0.156
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Bispectrum: squeezed configurations, B(k, k,∆k)
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Bispectrum: squeezed configurations, B(k, k,∆k)
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Bispectrum: squeezed configurations, B(k, k,∆k)
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G2(Φv) = (∇ijΦv)2 − (∇2Φv)2,
G3(Φv) = (∇2Φv)3 + 2∇ijΦv∇jkΦv∇kiΦv − 3(∇ijΦv)2∇2Φv.

δNloc
g = γ2 G2 (Φv)(1 + β δ)

+ γ3

�
G3(Φv) +

6
7
G2(Φ(1)

v ,Φ2LPT)
�

+ . . .

Beyond Local Bias (Gaussian)

Suppose at some time t*, objects form with local bias,

δ∗g = b∗1 δ∗ +
b∗2
2!

δ2
∗ +

b∗3
3!

δ3
∗ + . . .

As time goes on, does bias stay local?

The answer is (a resounding) no!
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FIG. 5. Same as Fig. 4 but for low-mass halos at z = 0 (see

LMz0 in Table I). For the least biased objects in our samples,

bias becomes local.

simulation box we have four fields smoothed at large-
scales (Rs = 40h−1 Mpc): δ, G2, G3 and δh. If large-
scale bias were local, δh would depend only on δ, and
thus surfaces of constant δh should agree with those of
constant δ, in other words, ∇δh in this three-dimensional
space (δ,G2,G3) should be parallel to the δ-axis. Figure 4
shows this construction for the highest mass bin at z = 1,
where the effects of non-local bias are the strongest: there
is a clear tilt of the surfaces of constant δh in the G2 direc-
tion, but no discernible dependence on G3. Therefore, in
cells of fixed δ, where local bias would predict a constant
δh, we see significant variations in δh that scale with the
value of G2. Note that at fixed δ, δh is a decreasing func-
tion of G2, as predicted by our simple arguments in the
previous sections.

Figure 5 shows what happens in the lowest-mass bin at
z = 0, for which the large-scale linear bias is the smallest
among our halo samples. We see now that bias does be-
come local: planes of constant δ agree with constant δh,
and ∇δh points along the δ-axis. This is also in qualita-
tive agreement with our simple model developed in the
previous sections.

In Figure 6 we show the same plot for high-mass halos
at z = 0, demonstrating that indeed more biased objects
at fixed z do show more non-local large-scale bias. Again,
∇δh has a significant component in the G2-direction, and
little (if anything) in the G3-direction, showing that the
results presented in Fig. 4 are generic. Our model in
the previous section does predict the dependence on G2

to be stronger than that on G3 but only by a factor of
about two or so (the precise value depends on “forma-
tion” time); the results from the simulations suggest that

FIG. 6. Same as Fig. 4 but for high-mass halos at z = 0 (see

HMz0 in Table I).

the suppression of the G3 amplitude is even greater.
It is rather common (see e.g. [42, 81–83] for recent ex-

amples) to present the bias relation from simulations in
terms of a scatter plot of δh and δ, which corresponds to
projecting out the G2 and G3 directions in our Figs. 4-
6. Because of the tilt in the G2 direction, a bias that is
completely deterministic in δ, G2 and G3 will lead, when
projected into the δ-axis, to a stochastic δh vs δ relation
with the scatter simply coming from points with the same
δ that have different G2. The question which arises is if
the scatter seen in the δh vs δ relation can be explained
by this projection effect, at least partially? One way
to address this is to ask whether the scatter about the
tilted planes with constant δh in the three-dimensional
space (δ,G2,G3) is significantly less than that seen in the
1D scatter plot of δh vs δ. We find that indeed the mul-
tidimensional scatter is smaller than the 1D scatter, but
only marginally so (with one exception, which we discuss
in the next paragraph). This indicates that most of the
scatter of the δh vs δ relation is not due to the depen-
dence of δh on the “hidden variables” G2 and G3. In fact,
this scatter can be explained [24, 25] in the context of
the excursion-set model of halo formation by noting that
the small-scale density field (whose excursions above the
collapse threshold correspond to halo formation) has a
stochastic relation to the large-scale density field δ.

Having seen that there is little, if any, non-locality
coming from G3 we look for the possible effects of ve-
locity bias. From our model we expect that if there is
velocity bias at the smoothing scale we consider (Rs =
40 h−1 Mpc), then a dipole non-local term D will appear
in the bias relation. As discussed before, a statistical

linear bias ~ 1.4

planes of constant δh
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TABLE I. Halo Samples used in this paper

Halo Sample z b× Mass bin [10
13M⊙/h]

LMz0 0 1.43 4− 7

MMz0 0 1.75 7− 15

HMz0 0 2.66 > 15

LMz0.5 0.5 1.88 3− 5

MMz0.5 0.5 2.26 5− 10

HMz0.5 0.5 3.29 > 10

LMz1 1 2.43 2− 3.1

MMz1 1 2.86 3.1− 5.7

HMz1 1 3.99 > 5.7

index ns = 1 and normalization σ8 = 0.9. The simula-

tions were run using Gadget2 [77] with initial conditions

set at zi = 49 using 2nd order-Lagrangian Perturbation

Theory (2LPT) [49, 78]. The halos are identified using

the friends-of-friends algorithm with linking length equal

to 0.2 times the mean inter-particle separation. We di-

vide our halo sample into three mass bins at each redshift

z = 0, 0.5, 1. Table I shows the main features of each

of these, including the large-scale (linear) bias obtained

from measuring the cross-power spectrum between halos

and matter, i.e. b× = Phm/Pmm, and averaging over

scales k ≤ 0.05 h Mpc
−1

.

To assess the locality of large-scale halo bias in the sim-

ulations we proceed as follows. We build the smoothed

matter fluctuations by interpolating the dark matter par-

ticles in the simulation to a grid of size Ngrid = 180 (cor-

responding to a grid separation of � 7 h−1
Mpc), Fourier

transforming using FFT’s, multiplying by the Fourier

transform of a real-space top-hat window function of ra-

dius Rs = 40h−1
Mpc, and Fourier transforming back to

real space. We build the smoothed halo overdensity field

similarly. We build the smoothed Galileon fields G2 and

G3 from the velocity field by first constructing the velocity

potential Φv (and velocity divergence θv = ∇2Φv) by us-

ing a Delaunay tessellation to build the volume weighted

velocity field on the grid (see [79] for details), construct-

ing the Galileon fields on the grid and then smoothing

them as one does for any scalar field (δ or δh) as ex-

plained above. That is,

G2(x) =

�
e
−ik12·x

(µ2
12 − 1) θv(k1)θv(k2) W12 d3k1d

3k2

(117)

where W12 ≡W (k12Rs), µij ≡ k̂i · k̂j and

G3(x) =

�
e
−ik123·x

(1 + 2µ12µ23µ31 − µ2
12 − µ2

23 − µ2
31)

× θv(k1)θv(k2)θv(k3)W123 d3k1d
3k2d

3k3. (118)

We ignore, for simplicity, the extra non-local term de-

pending on the 2LPT potential (see Eq. 110). Including

this term into the plots we present in this section does

not change the results.

FIG. 4. Illustration of non-local large-scale bias in numer-

ical simulations for high-mass halos at z = 1 (see HMz1

in Table I). The plot shows surfaces of constant δh =

−0.3, 0.1, 0.5, 0.9 (from left to right, or red, blue, yellow, and

green, respectively) as a function δ, G2 and G3. If large-scale

bias were a local function of δ, surfaces of constant δh would be

δ = const. planes (see next figure). Instead, there is significant

tilt (∇δh is not parallel to the δ-axis) showing a non-negligible

dependence on G2. All fields (δ, G2, G3 and δh) have been

smoothed with a top-hat window of radius Rs = 40 h−1
Mpc.

Note that since the Galileon fields are non-linear com-

binations of (derivatives of) the velocity potential, this

procedure is not the same as building the Galileon fields

of the smoothed velocity potential, which would remove

mode-couplings of the smoothing scale to smaller scales.

This means that our smoothed Galileon fields depend to

some extent on the choice of grid size (which effectively

determines up to what scale we allow mode-couplings; in

our case this is down to� 7 h−1
Mpc). However, since the

velocity power spectrum is suppressed compared to the

density at small scales [80], the dependence is not very

strong, particularly because, in G2, the coupling to small-

scale modes requires wave vectors to be anti-colinear in

which case their contribution to G2 vanishes. We have

studied what happens if we increase Ngrid and we see no

significant change to the results presented below except

for an increase in noise (from coupling to even smaller-

scale modes). This is somewhat expected as one starts

to probe couplings to scales comparable or smaller than

the Lagrangian size halos. Ideally, one would use a grid

size different for each halo sample so only scales larger

than the respective Lagrangian radius are included in

Eqs. (117-118).

As a result of this procedure, at each grid point in the

linear bias ~ 4

planes of constant δh
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the bias relation up to second order, we thus include only
local quadratic bias b2 and the amplitude of the non-local
effect through G2. As we found in the previous section,
there is no significant detection of a G3 dependence, and
the (quadratic) dipole dependence is only significant for
the most biased samples, which correspond to extremely
rare halos. Thus we study the bias relation given by

δh = b1 δ +
b2

2
δ2 + γ2 G2, (122)

where we recall that for γ2 = −2(b1 − 1)/7, this corre-
sponds to assuming local Lagrangian bias (ie. y → ∞
in our simple model). In this way we can simultane-
ously test for local Eulerian (γ = 0), local Lagrangian
(γ = −2(b1 − 1)/7) and more generic non-local bias. We
note that a similar test (of local Eulerian vs Lagrangian
bias) was performed in the PSCz galaxy survey bispec-
trum [9] with the result that Eulerian local bias was a
slightly better fit to the galaxy bispectrum. Our tests in
this paper are in a very different regime, as PSCz galax-
ies are anti-biased while our halos are positively biased
(see Table I).

To avoid dealing with the complications of the inac-
curacy of Poisson shot-noise subtraction for halos (see
appendix A in [81]) that complicates interpreting devia-
tions from the local bias description, here we just study
the halo-matter-matter bispectrum bhmm rather than the
the halo bispectrum [83, 84],

�δh(k1)δ(k2)δ(k3)� = δD(k123) bhmm(k1, k2, k3). (123)

Note that this is not a symmetric function of the wavec-
tors. We thus define a symmetrized quantity [83],

Bhmm ≡ 1
3
(bhmm + bmhm + bmmh), (124)

which from Eq. (122) obeys

Bhmm = b1 B123 +
b2

3
Σ123 +

2
3
γ2K123 (125)

where B123 is the matter bispectrum and

Σ123 = P1 P2 + cyc., K123 = (µ2
12 − 1) P1 P2 + cyc.,

(126)
with µ12 the cosine of the angle between k1 and k2. The
kernel K123 vanishes for colinear trianges where µij =
±1, thus the non-local correction is most important for
isosceles triangles.

We measured the halo-matter-matter bispectrum
Bhmm and matter bispectrum B123 from the 50 realiza-
tions of the simulations at the three redshift outputs.
The triangles included in the bispectrum analysis corre-
spond to all triangles with sides from twice the fundamen-
tal mode (2kf � 0.01 h Mpc−1) up to k ≤ 0.1 h Mpc−1,

TABLE II. Local Eulerian bias parameters b1 and b2 obtained

from halo-matter-matter bispectrum fits for all triangles with

k < 0.1 h Mpc
−1

. We also include the large-scale bias b× ob-

tained from the halo-matter power spectrum, to be compared

with b1. The last column indicates the goodness of the fit

assuming a diagonal covariance matrix (Ndof = 148).

Sample b× b1 b2 χ2
/dof

LMz0 1.43 1.42± 0.01 −0.91± 0.03 1.86

MMz0 1.75 1.71± 0.01 −0.55± 0.03 1.29

HMz0 2.66 2.37± 0.02 2.98± 0.07 3.74

LMz0.5 1.88 1.77± 0.01 −0.15± 0.03 0.91

MMz0.5 2.26 2.13± 0.01 0.67± 0.03 0.87

HMz0.5 3.29 2.84± 0.03 5.89± 0.10 3.77

LMz1 2.43 2.22± 0.01 1.27± 0.04 0.89

MMz1 2.86 2.62± 0.02 2.77± 0.06 1.07

HMz1 3.99 3.41± 0.05 9.98± 0.14 3.42

binned in units of 2kf , yielding 150 binned triangles (cor-
responding to ∼ 1.2× 108 fundamental triangles of sides
inside the prescribed bins and all possible orientations).
This together with the measured matter power spectrum
can be used in Eq. (125) to fit for the parameters b1, b2

and γ2. In what follows we discuss such constraints for
all the halo samples.

Table II shows the results from fitting Eulerian local
bias (γ2 = 0) to the relation in Eq. (125). For compari-
son, in this and other tables, we reproduce the value of
the large-scale linear bias obtained from the halo-matter
cross spectrum b×. Note that for the lowest biased ob-
jects in our sample, LMz0, the linear bias obtained from
the bispectrum b1 agrees with b×, but this agreement
disappears for all other samples, giving a significantly
smaller b1 than the large-scale linear bias b× shown by
the power spectrum, increasingly so for more biased ob-
jects. Recently, [83] found a similar result for halos with
more than 20 particles at z = 0. Here, we highlight the
mass and redshift dependence of this issue in more detail.
As shown in [83], had we used the reduced bispectrum
Q = B/Σ rather the bispectrum itself to find the bias pa-
rameters, then we would have found the opposite result,
i.e. a linear bias b1 smaller than b×. To explain why, let
us for definiteness define a reduced halo-matter-matter
bispectrum by

Qhmm ≡ Bhmm

(P×(k1)P×(k2) + cyc.)
=

Bhmm

b2
×Σ123

. (127)

Thus, while the halo-matter-matter bispectrum fits yield
b1B and b2B with Bhmm = b1BB + b2BΣ/3, the reduced
bispectrum yield parameters b1Q and b2Q with Qhmm =
Q/b1Q + b2Q/3b2

1Q. These are related by

b1Q = b×
� b×

b1B

�
, b2Q = b2B

� b×
b1B

�2
; (128)
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TABLE III. Eulerian bias parameters b1 and b2 obtained from

doing a Lagrangian local bias model fit to the bispectrum.

Sample b× b1 b2 χ2
/dof

LMz0 1.43 1.48± 0.01 −1.26± 0.04 2.12

MMz0 1.75 1.81± 0.01 −1.15± 0.03 1.36

HMz0 2.66 2.59± 0.02 1.78± 0.07 2.73

LMz0.5 1.88 1.87± 0.01 −0.79± 0.04 0.94

MMz0.5 2.26 2.30± 0.01 −0.26± 0.04 0.72

HMz0.5 3.29 3.12± 0.03 4.34± 0.11 2.91

LMz1 2.43 2.40± 0.02 0.27± 0.05 0.77

MMz1 2.86 2.85± 0.02 1.45± 0.06 0.82

HMz1 3.99 3.77± 0.05 7.97± 0.16 2.74

therefore, if b1B > b×, then b1Q < b×. Similarly, for
halo bispectra (rather than halo-matter-matter), the re-
lationship between reduced and un-reduced bispectra lin-
ear bias is instead b1Q = b× (b×/b1B)3, an even bigger
difference (i.e. the relative deviation of b1Q from b× is
three times larger than for b1B). These disagreements
will be resolved shortly by including non-local bias.

Table III shows the analogous results when the bias
is assumed to be local in Lagrangian space, equivalent
to assuming γ2 = −2(b1 − 1)/7 in Eq. (122). The re-
sults in this case are somewhat mixed. At z = 0 the
results are worse than for the Eulerian case, except at
high mass. At higher redshifts, the Lagrangian results
show improvement, particularly at z = 1, but there are
still some significant discrepancies between b1 and b×,
and in any case the χ2/dof are not very convincing.

Finally, Table IV shows the results for the non-local
bias model with the amplitude of G2 being fit for. The
results show now a significant improvement, in particular
b1 is always within two-sigma of the b× values, for all
redshifts and halo masses considered. We note that the
average (over all halo samples) deviations of b1 from b×
are 11σ, 4.5σ and 1.5σ for Eulerian, Lagrangian and non-
local bias fits to the bispectrum, respectively. Thus we
reject local Eulerian and Lagrangian bias models at high
significance. The price to pay in fitting for γ2 as well is
an increase in the b1 error bars, by a factor of almost two.

The values for γ2 in Table IV show a clear dependence
with linear bias, which is plotted in Fig. 9 (using the
more precise value of b× as linear bias). We see that the
results fall mostly along along a “universal” line given by
−2(b1−1.43)/7 (solid line), except for the most biased ha-
los at each redshift which fall below this line (closer to the
Lagrangian bias result, shown in dashed line). However
it is precisely these highly biased objects that may have
extra non-local contributions (such as a dipole, as dis-
cussed in the last section), so it is not clear at this point
how reliable this behavior is. On the other hand, note
that the solid line in Fig. 9 is not a fit to the data, but it
serves to illustrate deviations from local Lagrangian bias
for our least biased samples. More work is needed to see

TABLE IV. Eulerian bias parameters b1 and b2 and non-local

γ2 parameter obtained from doing a quadratic non-local bias

model fit to the bispectrum. For comparison purposes, note

that a non-zero γ2 gives an effective −(4/3)γ2 contribution to

b2 (see top panel in Fig. 8). Here Ndof = 147.

Sample b× b1 b2 γ2 χ2
/dof

LMz0 1.43 1.42± 0.02 −0.92± 0.08 −0.01± 0.03 1.87

MMz0 1.75 1.76± 0.02 −0.81± 0.08 −0.10± 0.03 1.19

HMz0 2.66 2.61± 0.04 1.71± 0.18 −0.48± 0.06 2.74

LMz0.5 1.88 1.83± 0.02 −0.46± 0.09 −0.12± 0.03 0.84

MMz0.5 2.26 2.24± 0.02 0.05± 0.09 −0.24± 0.03 0.67

HMz0.5 3.29 3.16± 0.06 4.10± 0.28 −0.70± 0.10 2.91

LMz1 2.43 2.35± 0.03 0.57± 0.13 −0.28± 0.05 0.74

MMz1 2.86 2.80± 0.03 1.70± 0.16 −0.42± 0.06 0.80

HMz1 3.99 3.84± 0.08 7.55± 0.41 −0.96± 0.16 2.73

whether one could understand these results from theoret-
ical arguments. We note however that it is not surprising
that bias is not local in Lagrangian space, even in simple
extensions of the excursion set of halo formation the bar-
rier for collapse is known to depend on other quantities
than the overdensity δ, mostly on the ellipticity param-
eter e [32]. Appendix B shows the relationship between
ellipticity e, prolateness p and the invariants of the de-
formation tensor or Galileons.

We see then that the presence of non-local bias (G2) re-
quired from the multi-dimensional plots in the previous
section is confirmed by the bispectrum analysis, which
shows that including such terms solves a systematic er-
ror in the determination of the linear bias, increasing
for more biased objects. This is important because this
systematic error would otherwise affect the determina-
tion of cosmological parameters from a bispectrum anal-
ysis (see [85]), particularly for luminous galaxies (such as
LRGs in SDSS) that populate high-mass halos. The extra
dependence on G2 is also important in at least two more
aspects: it introduces a dependence on triangle shape
that is degenerate with brane-induced modifications of
gravity [86, 87], and also mimics an equilateral-type pri-
mordial non-Gaussianity signature (see Fig. 1 in [88]).
Therefore, for all these reasons, it is important that such
dependencies are taken into account when doing bispec-
trum analyses in galaxy surveys, extending what was
done already in [9] by considering both Eulerian and La-
grangian local bias models.

VIII. CONCLUSIONS

In this paper we studied the non-localities induced
in the bias relation by gravitational evolution, provid-
ing results under a number of different scenarios. In the
simplest case, galaxies form at a single time and evolve
conserving their comoving number density (no merging)
following the dark matter (no velocity bias). In this
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TABLE III. Eulerian bias parameters b1 and b2 obtained from

doing a Lagrangian local bias model fit to the bispectrum.

Sample b× b1 b2 χ2
/dof

LMz0 1.43 1.48± 0.01 −1.26± 0.04 2.12

MMz0 1.75 1.81± 0.01 −1.15± 0.03 1.36

HMz0 2.66 2.59± 0.02 1.78± 0.07 2.73

LMz0.5 1.88 1.87± 0.01 −0.79± 0.04 0.94

MMz0.5 2.26 2.30± 0.01 −0.26± 0.04 0.72

HMz0.5 3.29 3.12± 0.03 4.34± 0.11 2.91

LMz1 2.43 2.40± 0.02 0.27± 0.05 0.77

MMz1 2.86 2.85± 0.02 1.45± 0.06 0.82

HMz1 3.99 3.77± 0.05 7.97± 0.16 2.74

therefore, if b1B > b×, then b1Q < b×. Similarly, for
halo bispectra (rather than halo-matter-matter), the re-
lationship between reduced and un-reduced bispectra lin-
ear bias is instead b1Q = b× (b×/b1B)3, an even bigger
difference (i.e. the relative deviation of b1Q from b× is
three times larger than for b1B). These disagreements
will be resolved shortly by including non-local bias.

Table III shows the analogous results when the bias
is assumed to be local in Lagrangian space, equivalent
to assuming γ2 = −2(b1 − 1)/7 in Eq. (122). The re-
sults in this case are somewhat mixed. At z = 0 the
results are worse than for the Eulerian case, except at
high mass. At higher redshifts, the Lagrangian results
show improvement, particularly at z = 1, but there are
still some significant discrepancies between b1 and b×,
and in any case the χ2/dof are not very convincing.

Finally, Table IV shows the results for the non-local
bias model with the amplitude of G2 being fit for. The
results show now a significant improvement, in particular
b1 is always within two-sigma of the b× values, for all
redshifts and halo masses considered. We note that the
average (over all halo samples) deviations of b1 from b×
are 11σ, 4.5σ and 1.5σ for Eulerian, Lagrangian and non-
local bias fits to the bispectrum, respectively. Thus we
reject local Eulerian and Lagrangian bias models at high
significance. The price to pay in fitting for γ2 as well is
an increase in the b1 error bars, by a factor of almost two.

The values for γ2 in Table IV show a clear dependence
with linear bias, which is plotted in Fig. 9 (using the
more precise value of b× as linear bias). We see that the
results fall mostly along along a “universal” line given by
−2(b1−1.43)/7 (solid line), except for the most biased ha-
los at each redshift which fall below this line (closer to the
Lagrangian bias result, shown in dashed line). However
it is precisely these highly biased objects that may have
extra non-local contributions (such as a dipole, as dis-
cussed in the last section), so it is not clear at this point
how reliable this behavior is. On the other hand, note
that the solid line in Fig. 9 is not a fit to the data, but it
serves to illustrate deviations from local Lagrangian bias
for our least biased samples. More work is needed to see

TABLE IV. Eulerian bias parameters b1 and b2 and non-local

γ2 parameter obtained from doing a quadratic non-local bias

model fit to the bispectrum. For comparison purposes, note

that a non-zero γ2 gives an effective −(4/3)γ2 contribution to

b2 (see top panel in Fig. 8). Here Ndof = 147.

Sample b× b1 b2 γ2 χ2
/dof

LMz0 1.43 1.42± 0.02 −0.92± 0.08 −0.01± 0.03 1.87

MMz0 1.75 1.76± 0.02 −0.81± 0.08 −0.10± 0.03 1.19

HMz0 2.66 2.61± 0.04 1.71± 0.18 −0.48± 0.06 2.74

LMz0.5 1.88 1.83± 0.02 −0.46± 0.09 −0.12± 0.03 0.84

MMz0.5 2.26 2.24± 0.02 0.05± 0.09 −0.24± 0.03 0.67

HMz0.5 3.29 3.16± 0.06 4.10± 0.28 −0.70± 0.10 2.91

LMz1 2.43 2.35± 0.03 0.57± 0.13 −0.28± 0.05 0.74

MMz1 2.86 2.80± 0.03 1.70± 0.16 −0.42± 0.06 0.80

HMz1 3.99 3.84± 0.08 7.55± 0.41 −0.96± 0.16 2.73

whether one could understand these results from theoret-
ical arguments. We note however that it is not surprising
that bias is not local in Lagrangian space, even in simple
extensions of the excursion set of halo formation the bar-
rier for collapse is known to depend on other quantities
than the overdensity δ, mostly on the ellipticity param-
eter e [32]. Appendix B shows the relationship between
ellipticity e, prolateness p and the invariants of the de-
formation tensor or Galileons.

We see then that the presence of non-local bias (G2) re-
quired from the multi-dimensional plots in the previous
section is confirmed by the bispectrum analysis, which
shows that including such terms solves a systematic er-
ror in the determination of the linear bias, increasing
for more biased objects. This is important because this
systematic error would otherwise affect the determina-
tion of cosmological parameters from a bispectrum anal-
ysis (see [85]), particularly for luminous galaxies (such as
LRGs in SDSS) that populate high-mass halos. The extra
dependence on G2 is also important in at least two more
aspects: it introduces a dependence on triangle shape
that is degenerate with brane-induced modifications of
gravity [86, 87], and also mimics an equilateral-type pri-
mordial non-Gaussianity signature (see Fig. 1 in [88]).
Therefore, for all these reasons, it is important that such
dependencies are taken into account when doing bispec-
trum analyses in galaxy surveys, extending what was
done already in [9] by considering both Eulerian and La-
grangian local bias models.

VIII. CONCLUSIONS

In this paper we studied the non-localities induced
in the bias relation by gravitational evolution, provid-
ing results under a number of different scenarios. In the
simplest case, galaxies form at a single time and evolve
conserving their comoving number density (no merging)
following the dark matter (no velocity bias). In this
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Conclusions

- More precise modeling of the scale-dependent bias is possible :)

- Non-local PNG initial conditions very doable for most common templates :)

- If somebody tells you wonderful things about the bispectrum, ask for their 
covariance matrix :(

- Local bias (even for Gaussian ICs) not enough, not even in Lagrangian space :(
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