Bias: Gaussian, non-Gaussian, Local, non-Local

Roman Scoccimarro (NYU)

- R.S., L. Hui, M. Manera, and K.C. Chan (arXiv:1108.5512)

- K.C. Chan, R.S. and R. Sheth (arXiv:1201.3614 and in preparation)

- LasDamas: C. McBride et al, M. Manera et al., E. Sefusatti et al. (in preparation)

Primordial Non-Gaussianity from Inflation

Gaussianity is a consequence of:

- i) inflaton a single scalar field
- ii) slowly rolling
- iii) in vacuum state
- iv) with canonical kinetic terms

if we relax i) we have for the Bardeen potential,

$$\Phi = \phi + f_{\rm NL} \phi^2$$

which implies for it a bispectrum,

$$B = 2f_{\rm NL}P_1P_2 + \text{cyc.} \qquad -10 < f_{\rm NL}^{\rm local} < 74$$

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias at large scales (Dalal et al 2008),

$$b_1(k) = b_{10} + \Delta b_1(k, f_{\rm NL})$$

with $b \sim 1/k^2$ at low-k. Thus the power spectrum of galaxies is sensitive to fnl!!

Beyond Local Primordial Non-Gaussianity

- Within single-field inflationary models, we can break Gaussianity by introducing non-canonical kinetic terms, leading to the so-called equilateral and orthogonal shapes for the primordial bispectrum.

For example, the equilateral model has a Bardeen potential bispectrum,

$$(6f_{\rm NL})^{-1}B_{\rm equil} = -P_1P_2 - 2(P_1P_2P_3)^{2/3} + P_1^{1/3}P_2^{2/3}P_3$$
$$-214 < f_{\rm NL}^{\rm equil} < 266$$

(permutations are understood), whereas the orthogonal model reads

$$(6f_{\rm NL})^{-1}B_{\rm ortho} = -3P_1P_2 - 8(P_1P_2P_3)^{2/3} + 3P_1^{1/3}P_2^{2/3}P_3$$

$$-410 < f_{\rm NL}^{\rm ortho} < 6$$

Generic Predictions in Peak-Background Split

We are interested in establishing as rigorously as possible the validity of the local PNG bias formula

$$\Delta b_1(k, f_{\rm NL}) = \frac{2f_{\rm NL}}{M(k)} (b_{10} - 1)\delta_c$$

and generalizing it to arbitrary (non-local) PNG. Some issues in derivations,

- proper treatment of filter and transfer function effects
- dependence on primordial bispectrum (cannot be just a number)
- peaks in phi vs peaks in delta approximations

$$\nabla \phi^2 = 2\phi \nabla^2 \phi + 2\nabla \phi \cdot \nabla \phi \approx 2\phi \nabla^2 \phi?$$

simulations suggest a somewhat smaller amplitude (depending on halo def) Saturday, April 21, 2012 A full calculation of the PBS change in bias due to arbitrary PNG bispectrum gives, \Box

$$\Delta b(k) = \frac{\partial_{\sigma^2} \left[I_B(k) \mathcal{F}_0 \right]}{M(k) \mathcal{F}_0}$$

$$I_B(k,R) \equiv \frac{1}{P_{\phi}(k)} \int B_{\delta_R \delta_R \phi}(\boldsymbol{q}, \boldsymbol{k} - \boldsymbol{q}, -\boldsymbol{k}) d^3 q$$

Note that, unlike the GW86 formula, what matters is the *cross* bispectrum. For local PNG, expanding in powers of k small (with higher-order corrections coming from filter, transfer function, grad-phi terms, etc

$$I_B(k=0,R) \approx 4 f_{\rm NL} \sigma_R^2(m) + \mathcal{O}(k^2)$$

which gives

$$\Delta b(k) = \frac{4f_{\rm NL}}{M(k)} \partial_{\ln \sigma^2} \ln(\sigma^2 \mathcal{F}_0) \stackrel{\clubsuit}{<} \frac{2f_{\rm NL}}{M(k)} \delta_c \frac{(\partial \mathcal{F}/\partial \delta_\ell)_0}{\mathcal{F}_0} = \frac{2f_{\rm NL}}{M(k)} \delta_c (b_1 - 1)$$

the precise relationship has to be obtained from the first-crossing prob FO.

In terms of the mass function,

$$\Delta b_1 = \frac{\partial_m \left[I_B(k,m) \left(\frac{d n}{d \ln m} \right) \left(\frac{d \sigma_m^2}{d m} \right)^{-1} \right]}{M(k) \left(\frac{d n}{d \ln m} \right)}$$

note that, without assuming markovian + universality, this is more general than the usual (b-I) amplitude.

Given a *Gaussian* mass function (not necessarily universal, e.g. measured from simulations), we can compute the scale dependent bias.

Same for quadratic bias,

$$\Delta b_2 = \frac{\partial_{\sigma_m^2} \left[I_B(k_1) \, b_{1L}^{(1)} \, \mathcal{F}_0 \right]}{M(k_1) \, \mathcal{F}_0} + k_1 \leftrightarrow k_2$$

$$\Delta b_2 = \frac{\partial_m \left[I_B(k_1) \, b_{1L}^{(1)} \left(\frac{dn}{d \ln m} \right) \left(\frac{d\sigma_m^2}{dm} \right)^{-1} \right]}{M(k_1) \left(\frac{dn}{d \ln m} \right)} + k_1 \leftrightarrow k_2$$

Saturday, April 21, 2012

A. Berlind, C. McBride, M. Manera, J. Gardner, M. Busha, R. Wechsler, F. van den Bosch

with

LasDamas Simulations

Name	Sample	Lbox	Npar	mpar	Nrealiz
Oriana (G)	LRG +Main -22	LRG 1280^3 4.57E+11		42	
Oriana fnl_local=+100	LRG +Main -22	2400	1280^3	4.57E+11	40
Oriana fnl_equi=-400	LRG +Main -22	2400	1280^3	4.57E+11	30
Oriana fnl_orto=-400	LRG +Main -22	2400	1280^3	4.57E+11	37
Carmen	Main -21	1000	1120^3	4.98E+10	42
Esmeralda	Main -20	640	1250^3	9.31E+09	50
Consuelo	Main -19-18	420	I 400^3	I.87E+09	50

Nmocks=4 x Nrealiz, 2LPT ICs, Gaussian Mocks available at http://lss.phy.vanderbilt.edu/lasdamas/

Dwarf Galaxies

40×40×40 h⁻¹Mpc region

Massive Calaxies

Groups

Clusters

non-local PNG Initial Conditions in Simulations

- In single-field inflationary models, we are instead interested in models that correspond to non-local PNG (due to non-canonical kinetic terms). For example, the equilateral model has a Bardeen potential bispectrum,

$$(6f_{\rm NL})^{-1}B_{\rm equil} = -P_1P_2 - 2(P_1P_2P_3)^{2/3} + P_1^{1/3}P_2^{2/3}P_3$$
$$-214 < f_{\rm NL}^{\rm equil} < 266$$

(permutations are understood), whereas the orthogonal model template reads

$$(6f_{\rm NL})^{-1}B_{\rm ortho} = -3P_1P_2 - 8(P_1P_2P_3)^{2/3} + 3P_1^{1/3}P_2^{2/3}P_3 - 410 < f_{\rm NL}^{\rm ortho} < 6$$

We are interested in generating such bispectra from quadratic (non-local) models, i.e.

$$\Phi = \phi + f_{\rm NL} \ K[\phi, \phi]$$

where K is the appropriate non-local quadratic kernel that generates the desired bispectrum. For simplicity, here we assume scale-invariance.

- Introduce some handy non-local operators

$$\partial \phi \equiv \sqrt{-\nabla^2} \phi(\mathbf{x}) \equiv \int e^{-i\mathbf{k}\cdot\mathbf{x}} k \phi(\mathbf{k}) d^3 k$$

$$\nabla^{-2}A(\mathbf{x}) \equiv -\int e^{-i\mathbf{k}\cdot\mathbf{x}} \left(\frac{1}{k^2}\right) A(\mathbf{k}) d^3k$$

$$\partial^{-1}A \equiv \sqrt{-\nabla^{-2}}A \equiv \int e^{-i\mathbf{k}\cdot\mathbf{x}}\left(\frac{1}{k}\right)A(\mathbf{k}) d^{3}k$$

Then the EQ and ORT bispectra templates can be generated by,

 $K[\phi,\phi] = a\phi^2 + b\,\partial^{-1}(\phi\,\partial\phi) + c\,\nabla^{-2}(\phi\,\nabla^2\phi) + d\,\nabla^{-2}(\partial\phi)^2 + e\,\nabla^{-2}\partial^{-1}(\phi\nabla^2\partial\phi) + f\,\nabla^{-2}\partial^{-1}(\nabla^2\phi\,\partial\phi) + f\,\nabla^{-2}\partial^{-1}(\nabla^2\phi,\partial\phi) + d\,\nabla^{-2}(\partial\phi)^2 + e\,\nabla^{-2}\partial^{-1}(\phi\nabla^2\partial\phi) + f\,\nabla^{-2}\partial^{-1}(\nabla^2\phi,\partial\phi) + f\,\nabla^{-2}(\partial^{-1}(\nabla^2\phi,\partial\phi)) + f\,\nabla^$

regularity constraints (one-loop corrections to the power spectrum must preserve scale-invariance in the IR) restrict the free parameters that leave the bispectrum invariant. Note these kernels have correct exchange symmetry.

More precisely,

$$\Phi_{\rm EQ} = \phi + f_{\rm NL} \Big[-3\phi^2 + 4\,\partial^{-1}(\phi\,\partial\phi) + 2\,\nabla^{-2}(\phi\,\nabla^2\phi) + 2\,\nabla^{-2}(\partial\phi)^2 \Big],$$

$$\Phi_{\text{ORT}} = \phi + f_{\text{NL}} \Big[-9\phi^2 + 10\,\partial^{-1}(\phi\,\partial\phi) + 8\,\nabla^{-2}(\phi\,\nabla^2\phi) + 8\,\nabla^{-2}(\partial\phi)^2 \Big],$$

2LPT Code to generate non-local (and local) PNG publicly available http://cosmo.nyu.edu/roman/2LPT/

Algorithm works for any bispectrum template that is sum of factorizable

$$B \simeq \sum g_1(k_1)g_1(k_2)g_1(k_3)$$

Overhead over local fnl is only about 35% (same Npar In Npar scaling)

Bispectrum


```
n_{\rm ZA49}/n_{\rm 2LPT49}
```


Scale-dependent Bias from Power Spectrum

naive BOSS signal to noise for local fnl=100

in pple enough (in pow + bisp) to detect fnl(loc)~few (competitive with CMB) Saturday, April 21, 2012

Halo S/N for Non-Gaussian Models, z=1.0, M>10¹⁴Mo

dashed= from bispectrum, solid=from power

Beyond Local Bias (Gaussian)

Suppose at some time t*, objects form with local bias,

$$\delta_{g}^{*} = b_{1}^{*} \,\delta_{*} + \frac{b_{2}^{*}}{2!} \,\delta_{*}^{2} + \frac{b_{3}^{*}}{3!} \,\delta_{*}^{3} + \dots$$

As time goes on, does bias stay local?

The answer is (a resounding) no!

$$\begin{split} \delta_{\mathrm{g}}^{\mathrm{Nloc}} &= \gamma_2 \,\mathcal{G}_2 \,(\Phi_{\mathrm{v}})(1+\beta \,\delta) \\ &+ \gamma_3 \left(\mathcal{G}_3(\Phi_{\mathrm{v}}) + \frac{6}{7} \,\mathcal{G}_2(\Phi_{\mathrm{v}}^{(1)}, \Phi_{2\mathrm{LPT}}) \right) + \dots \\ \mathcal{G}_2(\Phi_{\mathrm{v}}) &= (\nabla_{ij} \Phi_{\mathrm{v}})^2 - (\nabla^2 \Phi_{\mathrm{v}})^2, \\ \mathcal{G}_3(\Phi_{\mathrm{v}}) &= (\nabla^2 \Phi_{\mathrm{v}})^3 + 2\nabla_{ij} \Phi_{\mathrm{v}} \nabla_{jk} \Phi_{\mathrm{v}} \nabla_{ki} \Phi_{\mathrm{v}} - 3(\nabla_{ij} \Phi_{\mathrm{v}})^2 \nabla^2 \Phi_{\mathrm{v}}. \end{split}$$

TABLE II. Local Eulerian bias parameters b_1 and b_2 obtained from halo-matter-matter bispectrum fits for all triangles with $k < 0.1 h \,\mathrm{Mpc}^{-1}$. We also include the large-scale bias b_{\times} obtained from the halo-matter power spectrum, to be compared with b_1 . The last column indicates the goodness of the fit assuming a diagonal covariance matrix ($N_{dof} = 148$).

Sample	$b_{ imes}$	b_1	b_2	$\chi^2/{ m dof}$
LMz0	1.43	1.42 ± 0.01	-0.91 ± 0.03	1.86
MMz0	1.75	1.71 ± 0.01	-0.55 ± 0.03	1.29
HMz0	2.66	2.37 ± 0.02	2.98 ± 0.07	3.74
LMz0.5	1.88	1.77 ± 0.01	-0.15 ± 0.03	0.91
MMz0.5	2.26	2.13 ± 0.01	0.67 ± 0.03	0.87
HMz0.5	3.29	2.84 ± 0.03	5.89 ± 0.10	3.77
LMz1	2.43	2.22 ± 0.01	1.27 ± 0.04	0.89
MMz1	2.86	2.62 ± 0.02	2.77 ± 0.06	1.07
HMz1	3.99	3.41 ± 0.05	9.98 ± 0.14	3.42

TABLE III. Eulerian bias parameters b_1 and b_2 obtained from doing a *Lagrangian* local bias model fit to the bispectrum.

Sample	b_{\times}	b_1	b_2	$\chi^2/{ m dof}$
LMz0	1.43	1.48 ± 0.01	-1.26 ± 0.04	2.12
MMz0	1.75	1.81 ± 0.01	-1.15 ± 0.03	1.36
HMz0	2.66	2.59 ± 0.02	1.78 ± 0.07	2.73
LMz0.5	1.88	1.87 ± 0.01	-0.79 ± 0.04	0.94
MMz0.5	2.26	2.30 ± 0.01	-0.26 ± 0.04	0.72
HMz0.5	3.29	3.12 ± 0.03	4.34 ± 0.11	2.91
LMz1	2.43	2.40 ± 0.02	0.27 ± 0.05	0.77
MMz1	2.86	2.85 ± 0.02	1.45 ± 0.06	0.82
HMz1	3.99	3.77 ± 0.05	7.97 ± 0.16	2.74

TABLE IV. Eulerian bias parameters b_1 and b_2 and non-local γ_2 parameter obtained from doing a quadratic non-local bias model fit to the bispectrum. For comparison purposes, note that a non-zero γ_2 gives an effective $-(4/3)\gamma_2$ contribution to b_2 (see top panel in Fig. 8). Here $N_{dof} = 147$.

Sample	$b_{ imes}$	b_1	b_2	γ_2	χ^2/dof
LMz0	1.43	1.42 ± 0.02	-0.92 ± 0.08	-0.01 ± 0.03	1.87
MMz0	1.75	1.76 ± 0.02	-0.81 ± 0.08	-0.10 ± 0.03	1.19
HMz0	2.66	2.61 ± 0.04	1.71 ± 0.18	-0.48 ± 0.06	2.74
LMz0.5	1.88	1.83 ± 0.02	-0.46 ± 0.09	-0.12 ± 0.03	0.84
MMz0.5	2.26	2.24 ± 0.02	0.05 ± 0.09	-0.24 ± 0.03	0.67
HMz0.5	3.29	3.16 ± 0.06	4.10 ± 0.28	-0.70 ± 0.10	2.91
LMz1	2.43	2.35 ± 0.03	0.57 ± 0.13	-0.28 ± 0.05	0.74
MMz1	2.86	2.80 ± 0.03	1.70 ± 0.16	-0.42 ± 0.06	0.80
HMz1	3.99	3.84 ± 0.08	7.55 ± 0.41	-0.96 ± 0.16	2.73

Halos in Lagrangian space: Lag bias is non-local too.

At low-mass gamma2_Lag>0

Conclusions

- More precise modeling of the scale-dependent bias is possible :)
- Non-local PNG initial conditions very doable for most common templates :)
- If somebody tells you wonderful things about the bispectrum, ask for their covariance matrix :(
- Local bias (even for Gaussian ICs) not enough, not even in Lagrangian space :(