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Consider the most basic 

properties of interactions and

see what physics we get
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An interaction defines two events and orders them

Event A: A influences

Event B: B is influenced

A

B

The direction of the ordering

relation is arbitrary.

Interactions and Events

BA
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Partially-Ordered Set of Events

B

A

C
A Set of Events

along with a

Binary Ordering Relation

results in a

Partially-Ordered Set of Events

What constraints exist for consistent 

quantification of this partially-ordered set?



Chains are Easily Quantified

Other Elements can be Quantified by 

Relating them to a Chain
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Quantification of a Distinguished Chain

Distinguish a Chain (Observer Chain)

Quantify its elements with a 

non-decreasing

sequence of numbers.
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Quantification via Chain Projection

Quantify additional elements by 

projection onto the chain.
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Intervals

Intervals can be defined by pairs of 

events

(5-3,2-3) = (2,-1)pair
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Intervals

Intervals can be defined by pairs of 

events

(5-3,2-3) = (2,-1)

(5-3,3-3)=(2,0)

(4-3,4-3) = (1,1)

pair

pair

pair
interval
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scalar (2)(-1) = -2

(2)(0) = 0

(1)(1) = 1
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Chains Induce Structure
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Collinearity

An element    is said to be collinear with a finite chain    and a 

finite chain     , iff the projections of    onto   , can be found by 

first projecting     onto     and then onto     , and vice versa by 

interchanging the roles of     and    .
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Collinearity allows some chains to be ordered



Coordinated Chains Measure the Same 

Length for One Interval 
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Coordinated Chains

A set of chains are coordinated if 

an interval on one projects onto an 

interval of the same length on the 

others.

14

)()()()( xy PvPvxvyv 

)()()()( xy PvPvxvyv 

y

yP

xP

x

PO

yP

xP

))(),(),()((:|],[ xyxyP PvPvPvPvyx 

))()(),()((:|],[ xyOP PvPvxvyvyx 

Equivalently, intervals can be 

quantified by forward projections 

alone using two coordinated chains.



Distance Between Coordinated Chains
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Distance Between Coordinated Chains
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The distance between each pair 

of chains is found through 

chain projection using:

-Associativity of joining 

distances across chains

-arbitrary choice of events on 

the chains
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The Minkowskian Form Emerges from 

the Pair and Scalar Quantifications
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Minkowski
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Minkowski
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Changes from one Observer Chain to 

another is given by

Lorentz Transformations
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Transformations
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Lorentz Transformation
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Lorentz Transformation with

has a maximum invariant value of 1.]1,0[
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CONCLUSIONS

Treating the universe as a network of events and quantifying 

the network results in the Minkowski metric and Lorentz 

transformations in the case where observers are coordinated.

This suggests that the mathematics of space and time emerges 

as the unique means for an embedded observer to quantify the 

network.

Knuth K.H., Bahreyni N. 2012. 

arXiv:1209.0881v1 [math-ph]
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Intervals Can Be Quantified with

4, 2 and 1 Numbers
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Quantification of a Generalized Interval

The generalized interval          can be represented by

Four numbers

Two numbers (pair)

One number (scalar)
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