

Searches for a stochastic gravitational wave background with pulsar timing arrays: a data analysis pipeline

Sydney J. Chamberlin

Jolien Creighton, Paul Demorest, Justin Ellis, Larry Price, Joe Romano, Xavier Siemens

Outline

- Search efforts for gravitational waves (GWs)
- Detecting GWs with pulsar timing arrays (PTAs)
- Constructing the optimal detection statistic
- Building a stochastic GW detection pipeline
- * (very) preliminary results with upper limits, mock data challenge

Current GW detection efforts

* Ground-based laser interferometers (Laser Interferometer Gravitational wave Observatory)

Current GW detection efforts

* Ground-based laser interferometers (Laser Interferometer Gravitational wave Observatory)

PTAs (North American Nanohertz Observatory for Gravitational Waves, European Pulsar Timing Array, Parkes Pulsar Timing Array)

Together, form International Pulsar Timing Array

Current GW detection efforts

* Millisecond pulsars are extremely precise astronomical clocks:

* Millisecond pulsars are extremely precise astronomical clocks:

Spin period of PSR B1937+21 at Midnight, December 5, 1998:

P = 1.5578064688197945 ms +/- 0.000000000000000 ms !

* Millisecond pulsars are extremely precise astronomical clocks:

Spin period of PSR B1937+21 at Midnight, December 5, 1998:

P = 1.5578064688197945 ms +/- 0.000000000000000 ms !

* This gives us an observable quantity, the *timing residual*:

$$r(t) = TOA_{\text{actual}} - TOA_{\text{expected}}$$
$$r(t) = \int_0^t z(t') \, dt'$$

First showed by Hellings & Downs (1983) that a GW produces unique correlated variations in the timing residuals of a set of pulsars

- First showed by Hellings & Downs (1983) that a GW produces unique correlated variations in the timing residuals of a set of pulsars
- * To find optimal detection statistic, start with timing residuals:

$$\mathbf{r} = \left[egin{array}{c} \mathbf{r}_1 \ \mathbf{r}_2 \ dots \ \mathbf{r}_l \ \mathbf{r}_l \end{array}
ight]$$

$$\mathbf{\Sigma}_r = \langle \mathbf{r}\mathbf{r}^{\mathbf{T}}
angle$$

$$\mathbf{\Sigma}_r = \langle \mathbf{r}\mathbf{r}^{\mathbf{T}} \rangle$$

Define the likelihood:

$$p(r|\Omega) = \frac{1}{\sqrt{\det(2\pi\Sigma_r)}} \exp(-\frac{1}{2}r^T\Sigma_r^{-1}r)$$

$$\mathbf{\Sigma}_r = \langle \mathbf{r}\mathbf{r}^{\mathbf{T}}
angle$$

Define the likelihood:

$$p(r|\Omega) = \frac{1}{\sqrt{\det(2\pi\Sigma_r)}} \exp(-\frac{1}{2}r^T\Sigma_r^{-1}r)$$

Maximize the likelihood over GW amplitude (for a fixed GW spectrum); shown by Allen & Romano 1999, Malaspinas & R. Sturani 2006, Anholm et al. 2009

$$\mathbf{\Sigma}_r = \langle \mathbf{r}\mathbf{r}^{\mathbf{T}}
angle$$

Define the likelihood:

$$p(r|\Omega) = \frac{1}{\sqrt{\det(2\pi\Sigma_r)}} \exp(-\frac{1}{2}r^T\Sigma_r^{-1}r)$$

Maximize the likelihood over GW amplitude (for a fixed GW spectrum); shown by Allen & Romano 1999, Malaspinas & R. Sturani 2006, Anholm et al. 2009

$$\hat{\Omega}$$
 $\hat{
ho}$ A optimal statistic SNR dimensionless amplitude of the power spectrum

and... a working pipeline is born!

and... a working pipeline is born!

and... a working pipeline is born!

Pipelines for other GW sources also being developed

- stay tuned for Justin Ellis's talk (next)!

***** Upper limits in the literature:

van Haasteren et al. 2011 (EPTA): $A = 6 \times 10^{-15}$

Demorest et al. 2012 (NANOGrav): $A = 7.2 \times 10^{-15}$

Upper limits in the literature:

van Haasteren et al. 2011 (EPTA): $A = 6 \times 10^{-15}$ We get: $A_{95\%} = 6.5 \times 10^{-15}$ Demorest et al. 2012 (NANOGrav): $A = 7.2 \times 10^{-15}$ Upper limits in the literature:

van Haasteren et al. 2011 (EPTA): $A = 6 \times 10^{-15}$ We get: $A_{95\%} = 6.5 \times 10^{-15}$ Demorest et al. 2012 (NANOGrav): $A = 7.2 \times 10^{-15}$ We get: $A_{95\%} = 6.4 \times 10^{-15}$

Upper limit work

Upper limit work

Would like to have a robust frequentist upper limit, obtained with injections:

Upper limit work

Would like to have a robust frequentist upper limit, obtained with injections:

See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge

- See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge
- * Dataset I: 36 pulsars, I00ns white noise, SMBHB spectrum, $A=5 imes10^{-14}$

- See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge
- * Dataset I: 36 pulsars, I00ns white noise, SMBHB spectrum, $A=5 imes10^{-14}$

FOUND:
$$A = (4.9 \pm 0.19) \times 10^{-14}$$

SNR = 13

- See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge
- * Dataset I: 36 pulsars, I00ns white noise, SMBHB spectrum, $A=5 imes10^{-14}$

FOUND:
$$A = (4.9 \pm 0.19) \times 10^{-14}$$

SNR = 13

- See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge
- * Dataset I: 36 pulsars, I00ns white noise, SMBHB spectrum, $A=5 imes10^{-14}$

FOUND:
$$A = (4.9 \pm 0.19) \times 10^{-14}$$

SNR = 13

FOUND:
$$A = (4.7 \pm 0.27) \times 10^{-14}$$

SNR = 8.8

- See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge
- * Dataset I: 36 pulsars, I00ns white noise, SMBHB spectrum, $\,A=5 imes10^{-14}$

FOUND:
$$A = (4.9 \pm 0.19) \times 10^{-14}$$

SNR = 13

FOUND:
$$A = (4.7 \pm 0.27) \times 10^{-14}$$

SNR = 8.8

* Dataset 3: 36 pulsars, varying white noise, SMBHB spectrum, $~A=10^{-14}$

- See <u>http://www.ipta4gw.org</u>/ for details on the IPTA open/closed mock data challenge
- * Dataset I: 36 pulsars, I00ns white noise, SMBHB spectrum, $\,A=5 imes10^{-14}$

FOUND:
$$A = (4.9 \pm 0.19) \times 10^{-14}$$

SNR = 13

FOUND:
$$A = (4.7 \pm 0.27) \times 10^{-14}$$

SNR = 8.8

* Dataset 3: 36 pulsars, varying white noise, SMBHB spectrum, $~A=10^{-14}$

FOUND:
$$A = (1.2 \pm 0.07) \times 10^{-14}$$

SNR = 8.7

- * Work on noise estimation (watch for upcoming paper by Ellis et al. 2012)
- Issues with combining data sets from different PTAs
- Need to better characterize timing noise (how much red noise is intrinsic to pulsars, interstellar medium, etc.?)
- Need to develop documentation
- Could generalize pipeline to search for extra GW polarization modes

- * Work on noise estimation (watch for upcoming paper by Ellis et al. 2012)
- Issues with combining data sets from different PTAs
- Need to better characterize timing noise (how much red noise is intrinsic to pulsars, interstellar medium, etc.?)
- Need to develop documentation
- * Could generalize pipeline to search for extra GW polarization modes

Thank you!