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Introduction-Motivation

Introduction-Motivation

To have a spacetime with exotic features an appropriate stress-energy
tensor is required

To rule them out we need to prove energy conditions that restrict Tab
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Introduction-Motivation

⇒ The best possibility to do that is the achronal Averaged Null Energy
Condition (ANEC):

Achronal ANEC

Let M a manifold, g its lorentzian metric. Also let γ an achronal null
geodesic and la its tangent vector.Then∫

γ
Tabl

alb ≥ 0

⇒ Achronal ANEC was proved (Fewster, Olum, Pfenning. 2007) to hold
for geodesics in curved space, providing that any curvature stays some
minimum distance from the geodesic, which then are travelling in flat
space. Here we will try to prove it for geodesics travelling in curved space.
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Assumptions

Assumptions

1 Congruence of geodesics: We need ANEC violation along a finite
congruence of geodesics so we define a ”tubular” neighborhood M ′ of
null geodesic γ composed of a congruence of null geodesics

2 Coordinate system: Fermi-like coordinates

3 Curvature: We require that |Rµνρσ| < Rmax everywhere in M ′. We also
require the null convergence condition Rabl

alb ≥ 0 for any null vector l
which holds whenever the curvature is generated by a classical
background whose stress tensor obeys the Null Energy Condition (NEC)

4 Causal structure: Conditions outside M ′ do not affect the causal
structure of M ′

J+(p,M) ∩M ′ = J+(p,M ′)

5 Quantum field theory: We consider a quantum scalar field in M,
which inside M ′ is free and minimally coupled.
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Quantum inequality

Quantum inequality

In flat spacetime it was proved (Fewster, Roman 2002) that∫ τ0

−τ0
dτTab(w(τ))lalbf (τ/τ0)2 ≥ − (kal

a)2

12π2τ40

∫ τ0

−τ0
dτ f ′′(τ/τ0)2

where f is compact function with
∫ 1
−1 dxf (x)2 = 1.

Suppose we want to
test quantum inequality in a laboratory on the surface of the earth... This
is not flat space but it has curvature of order GM⊕/R

3
⊕.

⇒ We expect QI to hold with a small correction in globally hyperbolic
spacetimes with small curvature: |Rabcd |τ20 < ε, where ε� 1 and small
proper acceleration of the timelike paths

Conjecture

∫ τ0

−τ0
dτTab(w(τ))lalbf (τ/τ0)2 ≥ − (kal

a)2

12π2τ40

∫ τ0

−τ0
dτ f ′′(τ/τ0)2[1 + cε]
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Proof of achronal ANEC

Proof of achronal ANEC

1 The parallelogram

Consider the points
Φ(u, v) = (u, v , 0, 0), null geodesics
in M ′. The ANEC integral can be
writen as

A(v) =

∫ ∞
−∞

duTuu(Φ(u, v))

E (u)

E(v)

φ= (u,v,0,0)

Φο

u

γ

v

(0,v,0,0)

Define τ0 = γ−αr where 0 < α < 1/3 and r a positive number with
dimensions of length. As V → 1, γ →∞ and τ0 → 0. Now consider the
points ΦV (η, τ) = Φ(u, v) we can write the ANEC integral as∫ η0

−η0
dη

∫ τ0

−τ0
dτTuu(ΦV (η, τ))f (τ/τ0)2 < −Aτ0
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Proof of achronal ANEC

u

τ

v

η,

Timelike paths

η  ∼ γ τ

−η  < η < η

Null paths
−τ  < τ < τ

0 0

0

0

0

0
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Proof of achronal ANEC

1 Transformation of the Riemann tensor

We want to show that after the Lorentz transformation all
components of the Riemann tensor remain bounded.

We are interested for the components with more u’s than v ’s because
they increase after the boost.

Using the fact that NEC holds for the classical background we find
that these components vanish.

|Ra′b′c ′d ′ | < Rmax
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Proof of achronal ANEC

2 Timelike paths

We want to prove that ΦV (η, τ) are approximately timelike paths

It was proved (Kontou, Olum 2012) that
gα′β′ = ηα′β′ + hα′β′ = ηα′β′ + O(RX 2) where X denotes coordinate
values.

In our case we can easily prove that hα′β′ = O(Rmaxτ
2
0 ) so

gα′β′kα
′
kβ

′
= −1 + O(Rmaxτ

2
0 ) so timelike for sufficiently large γ

Using the same arguments we can prove that the acceleration is
|αβ′ |τ0 = O(Rmaxτ

2
0 )

We apply the QNEI in the globally hyperbolic causal diamond
N = J+(p) ∩ J−(q) which we proved that is inside the tube after the
boost
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Proof of achronal ANEC

3 Quantum Inequality

We showed that the curvature is bounded, paths ΦV are timelike and
proper acceleration is small. So now we can apply the quantum inequality
for small curvature:∫ η0

−η0
dη

∫ τ0

−τ0
dτTuu(ΦV (η, τ))f (τ/τ0)2 ≥ − Fη0

12π2γ2τ30
[1 + O(Rmaxτ

2
0 )]

Where we used (lαk
α)2 ∼ 1/γ2 and F = τ−10

∫
dτ f ′′(τ/τ0)2.

The right
hand of this equation goes like η0

γ2τ30
∼ γ2α−1 while in the ANEC inequality∫ η0

−η0
dη

∫ τ0

−τ0
dτTuu(ΦV (η, τ))f (τ/τ0)2 < −Aτ0

the right hand side goes like τ0 ∼ γα
⇒ Since α < 1/3 the lower bound in the first equation goes to zero faster
than the upper bound in the second equation. This contradiction proves
the theorem.
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Conclusions

Conclusions

Did we rule out time machines, wormholes and superluminal travel?

We proved that ANEC holds in curved spacetimes with classical
background and minimally coupled free quantum fields ⇒ No exotic
features in that kind of spacetimes

In future work we need to prove Quantum Inequality for curved
spacetime

Also we should rule out the probability that a field generated by
another field which violates NEC but obeys ANEC, can violate ANEC
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