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Motivation

At leading order, the GW signal from a binary oscillates at twice the
orbital frequency. Other harmonics of the orbital frequency enter at
higher post-Newtonian (PN) order

Are higher harmonics/amplitude corrections (ACs) important for
parameter estimation, particularly for BH-NS systems?

This can be addressed with Bayesian inference techniques like MCMC
or nested sampling runs, but these are expensive

We would like to get some insights with simpler, cheaper analytic
methods

The Fisher matrix is a standard approach, but can be perilous
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Fisher matrix assumptions

The Fisher matrix formalism is widely used because it is much cheaper
than a full Bayesian analysis

However, it makes several assumptions that are rather optimistic for
ground-based GW data analysis:

High SNR
Stationary, Gaussian noise
Signal depends linearly on all of its parameters

What could possibly go wrong?
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The Fisher matrix

Those assumptions are meant to justify approximating the likelihood
(of an observed signal given some proposed waveform parameters) as a
multivariate Gaussian in some neighborhood of the true parameters

L ' e−Γij δλ
i δλj/2 where Γij =

〈
∂h
∂λi

∣∣∣∣ ∂h
∂λj

〉
is the Fisher matrix.
The covariance matrix, the inverse of the Fisher matrix, will estimate
the expected errors and correlations of the parameter measurements

Σ = Γ−1

σi =
√

Σii

cij =
Σij√
ΣiiΣjj
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Log Likelihood

The likelihood that h(λ′) will produce a signal s = h(λ) + n is:

L(s|λ′) = exp
[
−1

2
〈
s− h(λ′)

∣∣s− h(λ′)
〉]

Expanding s and neglecting the noise contribution to the likelihood, we
get:

L = exp
[
−1

2

(〈
h(λ)

∣∣h(λ)
〉

+
〈
h(λ′)

∣∣h(λ′)
〉
− 2Re

〈
h(λ)

∣∣h(λ′)
〉)]

Assuming ρ2 =
〈
h(λ)

∣∣h(λ)
〉

=
〈
h(λ′)

∣∣h(λ′)
〉

,

ln L = −ρ2

1−
Re
〈
h(λ)

∣∣h(λ′)
〉√〈

h(λ)
∣∣h(λ)

〉〈
h(λ′)

∣∣h(λ′)
〉

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Ambiguity function

The ambiguity function, the normalized overlap between different
points in the parameter space, is

P(λ, λ′) =
Re
〈
h(λ)

∣∣h(λ′)
〉√〈

h(λ)
∣∣h(λ)

〉〈
h(λ′)

∣∣h(λ′)
〉

Computing the ambiguity function allows us to map out the log
likelihood, and it can be related to the Fisher matrix

ln L = −ρ2 (1− P(λ, λ′)) ' −Γij δλ
i δλj/2

The (normalized) effective Fisher matrix is obtained by fitting the
ambiguity function with a multivariate quadratic

Pfit(δλ) = 1− Γ̂eff
ij δλ

i δλj/2

The range over which you fit is determined by the expected SNR of
your signal: 1− P ≤ 1/ρ2
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Advantages of the Effective Fisher matrix

Plotting the ambiguity
function will tell you if the
Fisher matrix approximation
is at all reasonable
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Ambiguity function

Fitting to a scale set by the
SNR makes it robust against
fine-scale structure that is
unobservable at that SNR
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Fiducial Binary

We study a (10 + 1.4) M� BH-NS
binary (Mc = 2.99, η = 0.1077)
in initial LIGO
Use precessing PN waveforms
(SpinTaylorT4) with 0PN or 1.5PN
amplitude
Non-spinning/Spin-aligned: L has an
inclination of π/4 to line of sight N;
BH has spin 0 or 1 along L; NS is
non-spinning
Precessing: J is inclined to line of
sight by θNJ = π/4 ; precession cone
has an opening angle βJL = π/4; L is
initially either along N or
perpendicular to it
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Non-spinning results
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Spin-aligned results

Non-spinning: ACs do not improve
measurement of intrinsic parameters

Spin-aligned: ACs give a modest
improvement to intrinsic parameter
errors

In both cases, extrinsic parameters
are unmeasurable without amp. cor.,
and are measureable (but with large
errors) with ACs
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Precessing results

The errors are smaller for precessing
binaries than for spin-aligned
The gains from ACs become less
pronounced, however
The divide between intrinsic and
extrinsic parameters becomes
blurred, as angles describing the
precession cone correlate to both

amp. order 0PN 1.5PN
∆Mc/Mc .208% .195%

∆η/η 6.14% 4.91%
∆χ 0.0495 0.0421

∆βJL 0.0241 0.0210
∆θJN 0.117 0.113
∆αJL 0.187 0.191
∆φref — —
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Caveats

We see non-quadratic
behavior in the precessing
case for some orientations
(but not others)
We use a complex inner
product s.t. Re 〈h|h′〉 =
(h+|h′+) + (h×|h×)
corresponding to an idealized
network.
The results should lie
between those of a
single-IFO and a real
multi-detector network
We cautiously believe the
trends seen here and are
working to confirm with
MCMC
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The effective Fisher matrix allows one to see whether the Fisher matrix
formalism is likely to be valid (and for which parameters)
It is also robust against small-scale structure that can be problematic for
the standard Fisher matrix
Higher harmonics will likely have little effect on the measurement of
intrinsic parameters, but they can improve the measurement of extrinsic
parameters
For non-precessing systems, there is a clear separation of intrinsic and
extrinsic parameters, but this becomes blurred for precessing
For more details, see arXiv:1209.4494
Full MCMC runs underway to get more precise results and confirm the
trends seen here
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