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Introduction and motivation

Recently, Dappiaggi et al. considered the free (quantum) vector
potential of electromagnetism in curved spacetimes, in the light of
general covariance. Their conclusions:

The Poisson bracket may be degenerate, depending on the
topology of the background spacetime.
The theory shows non-local effects: the degenerate observables
may vanish, after embedding a spacetime into a larger one.

The interpretation of these degenerate observables remained to be
clarified.
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Introduction and motivation

In this talk we use the vector potential to illustrate a general formalism
that helps to clarify these issues. We address the following questions:

How do we compute the degeneracies of the Poisson bracket?
How do we interpret these degeneracies?

For the vector potential this leads to an apparently new insight in the
relation between the Aharonov-Bohm effect and Gauss’ law.
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Electromagnetism in Minkowski spacetime

In Minkowski spacetime M0, electromagnetism is described by:
A Maxwell field F ∈ Ω2(M0) such that

dF = ∇[µFνρ] = 0 δF = ∇µFµν = J = 0,

or a vector potential A ∈ Ω1(M0) such that (F = dA)

δdA = J = 0 A ∼ 0⇔ dA = 0,

or a vector potential A ∈ Ω1(M0) such that

δdA = J = 0 A ∼ 0⇔ A = dχ, χ ∈ Ω0(M0).

In general spacetimes these formulations are no longer equivalent!
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The Aharonov-Bohm effect and the gauge symmetry

The Aharonov-Bohm effect
allows us to distinguish between
A1 and A2 when A1 − A2 is not
exact:

A = dφ, in a region outside a
coil, is closed, but not exact. Us-
ing quantum particles one can
measure a phase shift ∼

∮
A.

B

A = dφ

We therefore consider the theory for A ∈ Ω1(M) such that

δdA = 0 A ∼ 0⇔ A = dχ, χ ∈ Ω0(M).
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Local observables

If Σ ⊂ M is a Cauchy surface, the space of field configurations is
parametrised by initial data:

F =
{

E ∈ Ω1(Σ)| δE = 0
}
⊕
{

a ∈ Ω1(Σ)
}
/dΩ0(Σ).

A local, linear observable is given by

〈(α, ε), (E ,a)〉 :=

∫
Σ
ε ∧ ∗a− α ∧ ∗E =

∫
Σ
εµaµ − αµEµ,

with (α, ε) in the dual space

F ′ =
{
α ∈ Ω1

0(Σ)
}
/dΩ0

0(Σ)⊕
{
ε ∈ Ω1

0(Σ)| δε = 0
}
.

The pairing 〈 , 〉 :F ′ ×F→C is non-degenerate in both entries.
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Peierls’ Poisson bracket

The Poisson bracket on F ′ can be obtained from the Lagrangian of the
theory by a general procedure due to Peierls (1952). It yields:

{(α1, ε1), (α2, ε2)} =

∫
Σ
ε1 ∧ ∗α2 − α1 ∧ ∗ε2.

Remarks:
The Poisson bracket is an important structure e.g. for canonical
quantisation (or deformation quantisation).
The Poisson bracket is an anti-symmetric linear map on (linear)
observables in F ′. (The symplectic form, on the other hand, is a
map on F .)
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Degeneracies of the Poisson structure

The Poisson bracket is (in general) degenerate:{
(α, ε), (α′, ε′)

}
= 0 ∀(α′, ε′) ∈ F ′

⇔

ε = 0, α ∈ deg(Σ) :=
(

Ω1
0(Σ) ∩ dΩ0(Σ)

)
/dΩ0

0(Σ).

I.e. α = dβ, α has compact support, but β does not.

Question:
What do the degenerate observables measure? The Aharonov-Bohm
effect?
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An example!

Consider an ultrastatic spacetime
with Σ := R3 \ {0} = R>0 × S2. Let
β ∈ Ω0(Σ) be

rotation invariant,
≡ 1 on r ≤ R,
≡ 0 on r ≥ R + ε,

where r is a radial coordinate. Then
α := dβ = β′(r)dr ∈ deg(Σ).

β = 1

β = 0

R ε

The observable (α,0) measures (a multiple of) the electromagnetic
flux through the shell 1 ≤ r ≤ 2.
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Gauss’ law

All degenerate observables are of this type: they use Gauss’ law to
measure electric charges which lie outside the spacetime itself.

The (possible) electric charges of a spacetime are characterised by
the possible degenerate observables, i.e. by

deg(Σ) =
(

Ω1
0(Σ) ∩ dΩ0(Σ)

)
/dΩ0

0(Σ).

When Σ is compact, deg(Σ) = {0}.
When H1(Σ) = {0}, deg(Σ) = H1

0 (Σ). A basis of degenerate
observables is then indexed by non-contractible spheres in Σ, up to
homology.
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Electric monopoles

In general, a basis of degenerate observables is indexed by
non-contractible spheres in Σ, up to homology, which cut Σ into two
non-compact pieces.

A pedagogical example is Σ := S1 × S2.
Here H1

0 (Σ) ' R, but deg(Σ) = {0} as Σ is compact.

Physical intuition:
Removing any non-contractible sphere from Σ leaves a single
connected set. The sphere does not separate a point charge from
infinity. There is no charge.
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Conclusions

The Aharonov-Bohm effect motivated the choice of gauge
equivalence.
By general procedures we found the Poisson structure and its
degeneracies.
The degeneracies correspond to Gauss’ law and yield a
topological formula for electric monopoles.
The same mathematical argument works for p-form fields and
magnetic monopoles, also when source currents are present.
The same argument should apply to other linearised gauge
theories (e.g. linearised GR).
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Spacetime formulae

The space of field configurations is

F :=
{

A ∈ Ω1(M)| δdA = 0
}
/dΩ0(M).

A local, linear observable is

f (A) := 〈f ,A〉 :=

∫
M

f ∧ ∗A, f ∈ Ω1
0(M).

The space of such observables is

F ′ :=
{

f ∈ Ω1
0(M)| δf = 0

}
/δdΩ1

0(M)

so that the pairing
F ′ ×F 3 (f ,A) 7→ 〈f ,A〉

is non-degenerate in both entries.
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Spacetime formulae

The Poisson bracket is

{f1, f2} =

∫
M

f1Ef2,

where E is the advanced-minus-retarded fundamental solution of a
hyperbolic (Laplace-Beltrami) operator obtained by fixing a Lorenz
gauge.

The space of degenerate observables is{
f , f ′
}

= 0 ∀f ′ ∈ F ′ ⇔ f ∈ Ω1
0(M) ∩ δdΩ1

tc(M),

where tc means time-like compact support.
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Poisson brackets vs. symplectic forms

We may view F as an infinite dimensional manifold. Then,

TF ' F × F , T ∗F ' F × F ′.

The Poisson bracket is a two-vector field P:

{f1, f2} = Pab(f1)a(f2)b, f1, f2 ∈ T ∗AF ' F ′.

One may also consider a symplectic form (up to technicalities)

Ω(δ1A, δ2A) = Ωab(δ1A)a(δ1A)b, δ1A, δ2A ∈ TAF ' F .

(See e.g. Lee and Wald (1990).)

In finite dimensions and without degeneracies, Pab and Ωab are each
other’s inverses. In general, the situation is not so clear.
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