Topological effects in linear gauge theories

Ko Sanders kosanders@uchicago.edu

Enrico Fermi Institute University of Chicago, USA

22nd Midwest Relativity Meeting, 28-29 September 2012, Chicago

Joint work (in preparation) with Claudio Dappiaggi (Pavia) and Thomas-Paul Hack (Hamburg).

A D N A B N A B N

Recently, Dappiaggi et al. considered the free (quantum) vector potential of electromagnetism in curved spacetimes, in the light of general covariance. Their conclusions:

- The Poisson bracket may be degenerate, depending on the topology of the background spacetime.
- The theory shows non-local effects: the degenerate observables may vanish, after embedding a spacetime into a larger one.

The interpretation of these degenerate observables remained to be clarified.

In this talk we use the vector potential to illustrate a general formalism that helps to clarify these issues. We address the following questions:

- How do we compute the degeneracies of the Poisson bracket?
- How do we interpret these degeneracies?

For the vector potential this leads to an apparently new insight in the relation between the Aharonov-Bohm effect and Gauss' law.

In Minkowski spacetime M_0 , electromagnetism is described by:

• A Maxwell field $F \in \Omega^2(M_0)$ such that

$$dF = \nabla_{[\mu}F_{\nu\rho]} = 0 \qquad \qquad \delta F = \nabla^{\mu}F_{\mu\nu} = J = 0,$$

• or a vector potential $A \in \Omega^1(M_0)$ such that (F = dA)

$$\delta dA = J = 0$$
 $A \sim 0 \Leftrightarrow dA = 0$,

• or a vector potential $A \in \Omega^1(M_0)$ such that

$$\delta dA = J = 0$$
 $A \sim 0 \Leftrightarrow A = d\chi, \ \chi \in \Omega^0(M_0).$

In general spacetimes these formulations are no longer equivalent!

The Aharonov-Bohm effect and the gauge symmetry

The Aharonov-Bohm effect allows us to distinguish between A_1 and A_2 when $A_1 - A_2$ is not exact:

 $A = d\phi$, in a region outside a coil, is closed, but not exact. Using quantum particles one can measure a phase shift $\sim \oint A$.

k.	k	k	k	4	÷	*	٢	۴	۴	٣
ĸ	ĸ	ĸ	ĸ	4	÷	4	۴	<mark>ہ</mark>	к dd	٣
K-	ĸ	ĸ	ĸ	Ł	~	۴	ĸ	A =	τ κ	٣
ĸ	¥	¥	ĸ	K	←	ĸ	ĸ	$\overline{\kappa}$	٨	ĸ
¥	*	¥	¥	\checkmark	<u>←</u>	5	7	*	4	٨
¥	¥	¥	↓	↓(B)↑	Ŷ	↑	↑	*
¥	¥	4	7	\mathbf{N}	\rightarrow	7	7	7	1	*
4	4	4	K	\checkmark	\rightarrow	×	R	7	7	7
4	Ы	ы	ĸ	*	\rightarrow	A	R	R	R	7
4	К	К	¥	+	÷	÷	7	R	R	7
ы	k	k	¥	¥	÷	7	7	ষ	7	R

We therefore consider the theory for $A \in \Omega^1(M)$ such that

$$\delta dA = 0$$
 $A \sim 0 \Leftrightarrow A = d\chi, \ \chi \in \Omega^0(M).$

If $\Sigma \subset M$ is a Cauchy surface, the space of field configurations is parametrised by initial data:

$$\mathcal{F} = \left\{ \boldsymbol{E} \in \Omega^1(\boldsymbol{\Sigma}) | \; \delta \boldsymbol{E} = \boldsymbol{0} \right\} \oplus \left\{ \boldsymbol{a} \in \Omega^1(\boldsymbol{\Sigma}) \right\} / d\Omega^0(\boldsymbol{\Sigma}).$$

A local, linear observable is given by

$$\langle (\alpha, \epsilon), (\boldsymbol{E}, \boldsymbol{a}) \rangle := \int_{\Sigma} \epsilon \wedge \ast \boldsymbol{a} - \alpha \wedge \ast \boldsymbol{E} = \int_{\Sigma} \epsilon_{\mu} \boldsymbol{a}^{\mu} - \alpha_{\mu} \boldsymbol{E}^{\mu},$$

with (α, ϵ) in the dual space

$$\mathcal{F}' = \left\{ \alpha \in \Omega_0^1(\Sigma) \right\} / d\Omega_0^0(\Sigma) \oplus \left\{ \epsilon \in \Omega_0^1(\Sigma) | \ \delta \epsilon = \mathbf{0} \right\}.$$

The pairing $\langle\;,\rangle\!:\!\mathcal{F}'\times\mathcal{F}\!\rightarrow\!\mathbb{C}$ is non-degenerate in both entries.

The Poisson bracket on \mathcal{F}' can be obtained from the Lagrangian of the theory by a general procedure due to Peierls (1952). It yields:

$$\{(\alpha_1,\epsilon_1),(\alpha_2,\epsilon_2)\}=\int_{\Sigma}\epsilon_1\wedge*\alpha_2-\alpha_1\wedge*\epsilon_2.$$

Remarks:

- The Poisson bracket is an important structure e.g. for canonical quantisation (or deformation quantisation).
- The Poisson bracket is an anti-symmetric linear map on (linear) observables in *F*'. (The symplectic form, on the other hand, is a map on *F*.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Poisson bracket is (in general) degenerate:

$$\{(\alpha,\epsilon),(\alpha',\epsilon')\} = \mathbf{0} \quad \forall (\alpha',\epsilon') \in \mathcal{F}'$$

$$\Leftrightarrow \\ \epsilon = \mathbf{0}, \ \alpha \in \deg(\Sigma) := \left(\Omega_0^1(\Sigma) \cap d\Omega^0(\Sigma)\right) / d\Omega_0^0(\Sigma).$$

I.e. $\alpha = d\beta$, α has compact support, but β does not.

Question:

What do the degenerate observables measure? The Aharonov-Bohm effect?

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

An example!

Consider an ultrastatic spacetime with $\Sigma := \mathbb{R}^3 \setminus \{0\} = \mathbb{R}_{>0} \times S^2$. Let $\beta \in \Omega^0(\Sigma)$ be

- rotation invariant,
- \equiv 1 on $r \leq R$,
- \equiv 0 on $r \geq R + \epsilon$,

where *r* is a radial coordinate. Then $\alpha := d\beta = \beta'(r)dr \in \deg(\Sigma)$.

Image: A matrix and a matrix

The observable (α , 0) measures (a multiple of) the electromagnetic flux through the shell $1 \le r \le 2$.

4 3 > 4 3

All degenerate observables are of this type: they use Gauss' law to measure electric charges which lie outside the spacetime itself.

The (possible) electric charges of a spacetime are characterised by the possible degenerate observables, i.e. by

$$\deg(\Sigma) = \left(\Omega_0^1(\Sigma) \cap d\Omega^0(\Sigma)\right)/d\Omega_0^0(\Sigma).$$

When Σ is compact, $\deg(\Sigma) = \{0\}$. When $H^1(\Sigma) = \{0\}$, $\deg(\Sigma) = H_0^1(\Sigma)$. A basis of degenerate observables is then indexed by non-contractible spheres in Σ , up to homology.

In general, a basis of degenerate observables is indexed by non-contractible spheres in Σ , up to homology, which cut Σ into two non-compact pieces.

A pedagogical example is $\Sigma := S^1 \times S^2$. Here $H_0^1(\Sigma) \simeq \mathbb{R}$, but $deg(\Sigma) = \{0\}$ as Σ is compact.

Physical intuition:

Removing any non-contractible sphere from Σ leaves a single connected set. The sphere does not separate a point charge from infinity. There is no charge.

- The Aharonov-Bohm effect motivated the choice of gauge equivalence.
- By general procedures we found the Poisson structure and its degeneracies.
- The degeneracies correspond to Gauss' law and yield a topological formula for electric monopoles.
- The same mathematical argument works for *p*-form fields and magnetic monopoles, also when source currents are present.
- The same argument should apply to other linearised gauge theories (e.g. linearised GR).

A D > A A P >

Spacetime formulae

The space of field configurations is

$$\mathcal{F} := \left\{ \boldsymbol{A} \in \Omega^1(\boldsymbol{M}) | \ \delta \boldsymbol{dA} = \boldsymbol{0} \right\} / \boldsymbol{d}\Omega^0(\boldsymbol{M}).$$

A local, linear observable is

$$f(A) := \langle f, A \rangle := \int_M f \wedge *A, \quad f \in \Omega^1_0(M).$$

The space of such observables is

$$\mathcal{F}' := \left\{ f \in \Omega_0^1(M) | \ \delta f = 0 \right\} / \delta d\Omega_0^1(M)$$

so that the pairing

$$\mathcal{F}' imes \mathcal{F}
i (f, \mathcal{A}) \mapsto \langle f, \mathcal{A}
angle$$

is non-degenerate in both entries.

The Poisson bracket is

$$\{f_1,f_2\}=\int_M f_1 E f_2,$$

where E is the advanced-minus-retarded fundamental solution of a hyperbolic (Laplace-Beltrami) operator obtained by fixing a Lorenz gauge.

The space of degenerate observables is

 $\{f, f'\} = 0 \quad \forall f' \in \mathcal{F}' \qquad \Leftrightarrow \qquad f \in \Omega^1_0(M) \cap \delta d\Omega^1_{tc}(M),$

where tc means time-like compact support.

Poisson brackets vs. symplectic forms

We may view \mathcal{F} as an infinite dimensional manifold. Then,

$$T\mathcal{F}\simeq \mathcal{F} imes \mathcal{F}, \quad T^*\mathcal{F}\simeq \mathcal{F} imes \mathcal{F}'.$$

The Poisson bracket is a two-vector field *P*:

$$\{f_1,f_2\}=P^{ab}(f_1)_a(f_2)_b,\quad f_1,f_2\in T^*_A\mathcal{F}\simeq \mathcal{F}'.$$

One may also consider a symplectic form (up to technicalities)

$$\Omega(\delta_1 A, \delta_2 A) = \Omega_{ab}(\delta_1 A)^a (\delta_1 A)^b, \quad \delta_1 A, \delta_2 A \in T_A \mathcal{F} \simeq \mathcal{F}.$$

(See e.g. Lee and Wald (1990).)

In finite dimensions and without degeneracies, P^{ab} and Ω_{ab} are each other's inverses. In general, the situation is not so clear.

Ko Sanders (University of Chicago)