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Introduction and motivation

Recently, Dappiaggi et al. considered the free (quantum) vector
potential of electromagnetism in curved spacetimes, in the light of
general covariance. Their conclusions:

@ The Poisson bracket may be degenerate, depending on the
topology of the background spacetime.

@ The theory shows non-local effects: the degenerate observables
may vanish, after embedding a spacetime into a larger one.

The interpretation of these degenerate observables remained to be
clarified.
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Introduction and motivation

In this talk we use the vector potential to illustrate a general formalism
that helps to clarify these issues. We address the following questions:

@ How do we compute the degeneracies of the Poisson bracket?
@ How do we interpret these degeneracies?

For the vector potential this leads to an apparently new insight in the
relation between the Aharonov-Bohm effect and Gauss’ law.
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Electromagnetism in Minkowski spacetime

In Minkowski spacetime M, electromagnetism is described by:
@ A Maxwell field F € Q?(My) such that

dF = V[,Fyp =0 6F = VFFp = J =0,
@ or a vector potential A € Q'(My) such that (F = dA)
0dA=J=0 A~0<s dA=0,
@ or a vector potential A € Q'(My) such that
SdA=J=0 A~0< A=dy, x € Q(M).

In general spacetimes these formulations are no longer equivalent!
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The Aharonov-Bohm effect and the gauge symmetry

The Aharonov-Bohm  effect
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We therefore consider the theory for A € Q'(M) such that

SdA=0 A~0e A=dy, x € Q°(M).
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Local observables

If ¥ ¢ Mis a Cauchy surface, the space of field configurations is
parametrised by initial data:

F= {E e Q'(X)| 0E = o} ® {a € 91(2)} /dQ0(%).
A local, linear observable is given by
((a,6), (E, a)) == /ze Axa—an+E = /ze#a” o, E",
with (a, €) in the dual space
7 ={aeal(x)}/dadE) e {e e al(x) se=0}.

The pairing (,): F’ x F—C is non-degenerate in both entries.
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Peierls’ Poisson bracket

The Poisson bracket on 7’ can be obtained from the Lagrangian of the
theory by a general procedure due to Peierls (1952). It yields:

{(a1,€1), (a2, €2)} = / €1 N\ xag — o A xég.
b2

Remarks:
@ The Poisson bracket is an important structure e.g. for canonical
quantisation (or deformation quantisation).

@ The Poisson bracket is an anti-symmetric linear map on (linear)

observables in 7. (The symplectic form, on the other hand, is a
map on F.)
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Degeneracies of the Poisson structure

The Poisson bracket is (in general) degenerate:
{(a,e),(c/, )} =0 V() eF
&
e=0, acdeg(X) = (Qé(Z) N on(z)) /dQ3(%).
l.e. « = df3, « has compact support, but 5 does not.
Question:

What do the degenerate observables measure? The Aharonov-Bohm
effect?
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An example!

Consider an ultrastatic spacetime B=0
with ¥ :=R3\ {0} = R, x S2. Let
B € Q°X)be

@ rotation invariant,

@ =1onr<RA,

@ =0onr>R+e,

where r is a radial coordinate. Then
a:=dp=p'(r)dr € deg(X).

The observable (a,0) measures (a multiple of) the electromagnetic
flux through the shell 1 < r < 2.
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Gauss’ law

All degenerate observables are of this type: they use Gauss’ law to
measure electric charges which lie outside the spacetime itself.

The (possible) electric charges of a spacetime are characterised by
the possible degenerate observables, i.e. by

deg(T) = (Qg,(z) N dQO(Z)) /dQ3(%).
When X is compact, deg(X) = {0}.
When H'(Z) = {0}, deg(X) = H{ (). A basis of degenerate

observables is then indexed by non-contractible spheres in ¥, up to
homology.
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Electric monopoles

In general, a basis of degenerate observables is indexed by
non-contractible spheres in X, up to homology, which cut X into two
non-compact pieces.

A pedagogical example is ¥ := S' x S2.
Here H}(X) ~ R, but deg(X) = {0} as X is compact.

Physical intuition:

Removing any non-contractible sphere from X leaves a single
connected set. The sphere does not separate a point charge from
infinity. There is no charge.
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Conclusions

@ The Aharonov-Bohm effect motivated the choice of gauge
equivalence.

@ By general procedures we found the Poisson structure and its
degeneracies.

@ The degeneracies correspond to Gauss’ law and yield a
topological formula for electric monopoles.

@ The same mathematical argument works for p-form fields and
magnetic monopoles, also when source currents are present.

@ The same argument should apply to other linearised gauge
theories (e.g. linearised GR).
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Spacetime formulae

The space of field configurations is
Fi= {A € Q'(M)| 5dA = o} /dQ°(M).
A local, linear observable is
f(A) = (f,A) := /M fAxA,  feQi(M).
The space of such observables is
Fo= {f e Ql(M)| o = o} /6dQ} (M)

so that the pairing
F'x F(f,A) — (f A

is non-degenerate in both entries.
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Spacetime formulae

The Poisson bracket is

(fu) = [ HER
M

where E is the advanced-minus-retarded fundamental solution of a
hyperbolic (Laplace-Beltrami) operator obtained by fixing a Lorenz

gauge.
The space of degenerate observables is
{f.fl=0 VfeF & fe QM) N sdQL(M),

where tc means time-like compact support.
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Poisson brackets vs. symplectic forms

We may view F as an infinite dimensional manifold. Then,
TF~FxF, T F~FxF.
The Poisson bracket is a two-vector field P:
{fi, b} = PP(f)a(k)y, fi,foe THF~F.
One may also consider a symplectic form (up to technicalities)
Q(61A, 02A) = Qap(01A)3(61A)°,  61A,0,A € TopF ~ F.
(See e.g. Lee and Wald (1990).)

In finite dimensions and without degeneracies, P2° and Q5 are each
other’s inverses. In general, the situation is not so clear.
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