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Motivation

• Hollands & Wald (2012): In vacuum GR, dynamical stability of black
holes with respect to axisymmetric perturbations is equivalent to
positivity of the canonical energy E on the space of perturbations that
keep M and J fixed to first order. Additionally,

E = δ2M − κ

8π
δ2A− Ωδ2J,

which establishes the equivalence between dynamical and thermodynamic
stability.



Motivation

• Can we similarly establish a dynamical stability criterion for perfect
fluid stars? Are dynamical and thermodynamic stability equivalent?

• Issue: E is constructed starting from a Lagrangian, but for perfect
fluids one must introduce nonphysical potential fields to have a
Lagrangian formulation. These potentials will not in general be
stationary even when the physical fields are, and they introduce extra
freedom (in addition to gauge).



Outline

• Overview of the “Lagrangian displacement” formulation of perfect
fluids and the definition of E . (Friedman (1978) used E to establish
dynamical instability with respect to non-axisymmetric perturbations.)

• Main results:

I We establish a criterion for dynamical stability with respect to
axisymmetric perturbations which keep the particle number, entropy,
and angular momentum of each fluid element fixed – namely E ≥ 0
for all such perturbations.

I We show that for configurations in thermodynamic equilibrium (rigid
rotation, uniform redshifted temperature and chemical potential),
this condition for dynamical stability is equivalent to the condition
for thermodynamic stability.



Description of the Einstein-Perfect Fluid System

Consider a single component perfect fluid.

Tab = (ρ+ p)uaub + pgab

I Can describe the system by the fields:

(gab, n, s, u
a) ,

with all other fluid quantities determined by an equation of state
ρ(n, s) and the first law dρ = nTds+

(ρ+p
n

)
dn.

I Choose to replace (n, ua) by Nabc ≡ nudεabcd. Then the system is
described by the “physical” fields:

(Nabc, s, gab) .



Equilibrium

• Dynamical equilibrium ≡ stationary axisymmetric: ua ∝ va ≡ ta + Ωϕa

• Iyer (1997): δM =

∫
Σ

(
T̃ δS − µ̃δN + ΩδJ

)
,

where S ≡ sN , J ≡ ϕ · T · ε, µ̃ ≡ |v|µ, and T̃ ≡ |v|T .

• Definition: A dynamical equilibrium configuration is in
thermodynamic equilibrium iff the total entropy S =

∫
Σ S is an

extremum with respect to perturbations that don’t change M , the total
particle number N = −

∫
ΣN , and the total angular momentum

J =
∫

Σ J . Equivalently, iff δM = 0 for all perturbations that don’t
change (N,S, J).

=⇒ A configuration is in thermodynamic equilibrium iff it is a stationary
axisymmetric solution that has uniform T̃ , µ̃, and Ω (rigid rotation).



Lagrangian Formulation

• There is no unconstrained Lagrangian formulation having (Nabc, s, gab)
as the varied fields [Schutz & Sorkin (1977)]. One must introduce new
“dynamical” fields.

• We use the following Lagrangian formulation:

I “Fiducial” 4-manifold F with fixed N
(f)
abc and s(f) satisfying

dN (f) = 0 = N (f) ∧ ds(f)

I Dynamical fields: φ =
(
gab, χ : F →M

)
I Physical fields: (Nabc, s, gab) =

(
χ∗N

(f)
abc , χ

∗s(f), gab

)
I Lagrangian: L = L(g) +L(m) =

(
1

16πR− ρ
)
ε.

=⇒ ∇a(nua) = ua∇as = 0.



Lagrangian Formulation

• Variational principle: 1-parameter family φ(λ) =
(
gab(λ), χλ ◦ χ

)
.

(χ : F →M and χλ : M →M , with χ0 the identity).

• The family χλ is generated to first order by a vector field ξa known as
the “Lagrangian displacement”.

I First order perturbation given by a pair δφ = (ξa, δgab).

I Eulerian perturbation: δQ ≡ d
dλQ(λ)

∣∣
λ=0

.

I Lagrangian perturbation: ∆Q ≡ d
dλχλ∗Q(λ)

∣∣
λ=0

= δQ+ LξQ.

• By construction, ∆Nabc = 0 and ∆s = 0, which is a physical restriction
on the perturbations allowed in this framework.



The Canonical Energy

• From L, construct the symplectic form [Lee & Wald (1990)]:

δL = E · δφ+ dθ(φ; δφ)

ω(φ; δ1φ, δ2φ) = δ2θ(φ, δ1φ)− δ1θ(φ, δ2φ)− θ(φ, [δ2, δ1]φ)

W [φ; δ1φ, δ2φ] =

∫
Σ
ω(φ; δ1φ, δ2φ)

=

∫
Σ

(
1

16π
δ1π

abδ2hab + (P1)a(ξ2)a
)
− (1↔ 2)

• On solutions, W is independent of the choice of Σ.

• For a stationary background, define

E(δ1φ, δ2φ) ≡W (φ;Ltδ1φ, δ2φ)

→ conserved symmetric bilinear form on perturbations.



Dynamical Stability

• What subspace T of axisymmetric perturbations should we investigate
stability on? (In the black hole case T was defined by δM = δJ = 0).

• We definitely need to restrict to perturbations which don’t change
(N,S, J), or else we could not possibly have positivity of E as a stability
criterion.

• We already have the restriction ∆N = ∆S = 0. (This fixes the
particle number and entropy in each fluid element, and therefore also the
total N and S.)

• We must also somehow restrict the angular momentum perturbation.
It seems sensible to restrict to ∆J = 0.



Dynamical Stability

−→ Define T by ∆N = ∆S = ∆J = 0.

This is a good choice! To have a stability criterion, it is essential that E
be nondegenerate on T modulo the perturbations that “don’t do
anything”:

I Pure gauge – these are degeneracies of W , and therefore of E .
I “Trivials” – These are defined by δQ = 0. There are two types in

the axisymmetric case:

(i) (ξ, δg) = (fu, 0). These are the remaining degeneracies of W in the
Lagrangian formalism.

(ii) (ξ, δg) = (fϕ, 0) for stationary axisymmetric f . The perturbations
that are symplectically orthogonal to these are exactly the ones that
have ∆J = 0.



The Canonical Energy and Dynamical Stability

Stability criterion for a stationary axisymmetric configuration:

Let T be the set of axisymmetric perturbations that have
∆N = ∆s = ∆J = 0. If E(δφ, δφ) ≥ 0 for all δφ ∈ T , then the
configuration is stable with respect to all perturbations in T . If E
can be made negative, there is an instability.



Thermodynamic Stability
• Main result: For a background in thermodynamic equilibrium, for any
axisymmetric perturbation δφ satisfying ∆N = ∆S = ∆J = 0,

E(δφ, δφ) = δ2M − µ̃δ2N − T̃ δ2S − Ωδ2J .

• Important ingredient for proof: For any perturbation in the Lagrangian
framework, we can write
(ξ, δg) = (ξ,−Lξg) + (0,∆g) = (pure gauge) + (pure metric).

• E > 0 is the condition for dynamical stability, and the condition for
thermodynamic stability is the positivity of the right hand side. Hence,
with respect to our considered class of perturbations, dynamical stability
is equivalent to thermodynamic stability.

→ Future: Is this result true for a more general class of perturbations,
i.e., those which just fix the total N , S, and J to first order?

Thank You!


