A Lonely Giant: The Sparse Satellite Population of M94 Challenges Galaxy Formation

Adam Smercina

Eric F. Bell, Paul A. Price, Richard D'Souza, Colin T. Slater, Jeremy Bailin, Antonela Monachesi, David Nidever

Reionization, feedback, tides can solve missing satellites and too big to fail. Were models 'overfit' to the LG?

We survey smaller areas than spectroscopic or integrated light searches in order to resolve RGB stars.

50 kpc

• M94: An isolated MW-mass galaxy

- <u>Mass</u>: $M_* \sim 4 \times 10^{10} M_{\odot}$
- Distance: 4.2 Mpc
- <u>Interesting features</u>: Large pseudo-bulge spiral arms.
- 3 filters (gri), 6 pointings w
 - 2 *deep* pointings (2h/filter/pt)
 - 4 shallower pointigs
 - ~150 kpc radial coverage in g
 - Discovered 2 low-mass satel

Visual inspection reveals two new M94 satellites with D~4.2 Mpc, M_V ~-10, M* ~ 10⁶M $_{\odot}$

 $\Delta \delta$ (arcsec)

- M94-Dw1:
 - $M_* \sim 9.7 \times 10^5 M_{\odot}$
 - $M_V = -10.1$
 - $\mu_V = 27.4 \text{ mag arcsec}^{-2}$
 - $D_{\text{TRGB}} = 4.1 \pm 0.6 \text{ Mpc}$
 - $R_{\rm p} \sim 69 \; \rm kpc$
- M94-Dw2:
 - $M_* \sim 6.7 \times 10^5 M_{\odot}$
 - $M_V = -9.7$
 - $\mu_V = 26.4 \text{ mag arcsec}^{-2}$
 - $D_{\text{TRGB}} = 4.8 \pm 0.6 \text{ Mpc}$
 - $R_{\rm p} \sim 38 \; \rm kpc$

We quantify survey efficiency using simulations of dwarfs like similarly bright Local Group satellites.

Completeness varies primarily with surface brightness and implies M94 has two M_V <-9.1 satellites at r<150 kpc

- Completeness is ~smooth function of surface brightness
 - >99% complete for $M_V < -10.3$
 - 85% complete for LG satellites in test range
- 85% complete down to $M_V < -9.1$
 - $M_* \sim 4 \times 10^5 M_{\odot}$

There are only 2 satellites $>4 \times 10^5 M_{\odot}!$

M94, with only 2 satellites within 150kpc, has a satellite system unlike any other Milky Way-mass galaxy

Figure: Satellite stellar mass functions for galaxies within 150 kpc projected distance from nearby MW-mass centrals.

Though this is a puzzle for (us) observers, is it a problem for galaxy formation models?

MW+M31: McConnachie 2012 M81: Karachentsev & Kudrya 2014 M101: Danieli et al. 2017 M94: Smercina et al. 2018

EAGLE permits modeling of Milky Way-mass central galaxies in a 'Standard' Halo Occupation Context

- Take all halos with $M_{\rm h} > 10^9 M_{\odot}$ from EAC
 - Pros: diverse population of MW-mass centrals; realistic tidal field from galaxies.
- Adopt a 'standard' halo occupation model.
 - Behroozi+13 + Munshi+17
 - Populate halos with galaxies.
- Identify 'MW-mass galaxies' as:
 - $6 \times 10^{11} M_{\odot} < M_{\rm h} < 3 \times 10^{12} M_{\odot}$
 - $M_* > 4 \times 10^{10} M_{\odot}$
- Identify 'satellites' as:
 - ≤ 150 kpc in projection (X & Y)
 - $\leq 1 \text{ Mpc } \Delta Z \text{ (LOS)}$

A group like M94 is very unlikely in a 'Standard' Halo Occupation Context

- M94 is *very* unlikely
 - <0.2% of MW-analogs in EAGLE have ≤ 2 satellites with $M_* \geq 4 \times 10^5 M_{\odot}$
 - \rightarrow <1% in a sample of 5
 - No systems host a most massive satellite with $M_* \le 2 \times 10^6 M_{\odot}$
- Shape of N_{sat} distribution doesn't match known galaxies well.
 - $N_{\text{sat}} (\ge 4 \times 10^5 M_{\odot}) = 9 \pm 3$ for 4 known galaxies
 - $\langle N_{\text{sat}} \rangle \sim 15$ for galaxies in 'standard' model

We explore a 'Stochastic' abundance matching model, and...

- Steeper low-mass slope
 α ~ -3
- Drastically increase scatter.
 - ~1 dex for $M_{\rm h} = 10^9 M_{\odot}$
- Increased scatter up to $M_h = 10^{11} M_{\odot}$
 - An OOM larger than the TBTF mass.
- 10% probability of total galaxy failure for $M_{\rm h} < 10^{10} M_{\odot}$

A 'Stochastic' abundance matching prescription increases the chances of finding a M94-like system to $>\sim 20\%$

- >5% probability of $N_{sat} \le 2$ \Rightarrow >20% chance in a sample of 5
- ~0.5% probability of most massive satellite $M_* \leq 10^6 M_{\odot}$
 - Not great, but *better*.
- Shape of distribution correctly spans 5 known galaxies.

M94's sparse satellite system suggests large scatter in stellar content of even $10^{10} - 10^{11}$ M_{\odot} halos.

- The MW-mass galaxy M94 hosts only 2 low-mass satellites within 150 kpc, with *no massive companions*.
- This satellite population is in tension with current 'standard' models of dark matter halo occupation.
- In order to alleviate the tension, galaxy formation must be much more stochastic than is currently predicted.
 - Including halos thought to be too massive to suffer from increased stochasticity in hydrodynamic simulations.

This 'Lonely Giant' advocates for significant modifications to ideas about how low-mass galaxies form.