# Searching for Magellanic Satellites with DECam

Alex Drlica-Wagner (Fermilab) Near Field Cosmology Workshop June 28, 2018



### Dwarf Galaxy Discovery Timeline





#### Maximum Likelihood Searches



#### Union of Search Strategies





Bechtol et al. 2015, ApJ, 807, 50 Luque et al. 2015, arXiv:1508.02381 22

# **Confirming & Classifying Satellites**









Simon et al. (2016)

# **Classification Without Spectroscopy**





# Anisotropy in the DES Footprint



# Magellanic Treasure Map

- Rewind the infall of the LMC+SMC
- Populate the LMC with a population of satellites
- Run forward to predict current distribution of satellites





# Magellanic Satellites Survey (MagLiteS)



# Pictor II

 $(\alpha_{2000}, \delta_{2000}, m-M) = (101^{\circ} 18, -59^{\circ} 90, 18.3)$ 



ADW et al. (2016)

# Carina II & Carina III





Torrealba et al. (2018)

Li et al. (2018)

# Survey of the Magellanic Stellar History (SMASH)



PI: David Nidever See Yumi Choi's talk yesterday

- ~57 nights allocated between 2012-2016
- 480 deg<sup>2</sup> sparsely distributed over
  ~2400 deg<sup>2</sup>
- ugriz ~ 24 mag

# Hydra II



Martin et al. 2015



Unresolved velocity dispersion; marginally resolved metallicity dispersion

#### Magellanic Periphery Survey PI: Dougal Mackey



- Contiguous observation in the bridge between the LMC & SMC
- 4 nights in 2016-2017
- ~440 deg<sup>2</sup>
- g,r ~ 23.5 mag

# Hydrus I



Mackey et al. (2018)



# **Adding Gaia Proper Motions**

Compare 6D phase space to LMC-analog debris in Aquarius simulation (a la Sales et al. 2011, 2017)



### Magellanic Treasure Map



# Missing Satellites of the LMC?

Hard to solve with just reionization, stellar stripping, or lower halo mass threshold for star formation

![](_page_18_Figure_2.jpeg)

Dooley et al. (2017)

A combination of late reionization and stellar stripping get closer...

# Conclusions

- Various authors predict 4 12 observed satellites could have originated with the Magellanic Clouds.
- Total contribution of Magellanic satellites between 1% -30% of total Milky Way satellite population.
- Satellite distribution can be used to estimate properties of the LMC (mass, accretion time, etc.)
- Lack of \*bright\* (M\* > 10<sup>4</sup> M $_{\odot}$ ) Magellanic satellites compared to predictions from simulations?

![](_page_20_Picture_0.jpeg)

### Incomplete Reference List

- Bechtol et al. (2015) [1503.02584]
- Koposov et al. (2015) [1503.02079]
- Drlica-Wagner et al. (2015) [1508.03622]
- Martin et al. (2015) [1503.06216]
- Deason et al. (2015) [1504.04372]
- Drlica-Wagner et al. (2016) [1609.02148]
- Simon et al. (2016) [1610.05301]
- Torrealba et al. (2018) [1801.07279]
- Dooley et al. (2017) [1703.05321]
- Nidever et al. (2017) [1701.00502?]
- Mackey et al. (2018) [1804.06431]
- Koposov et al. (2018) [1804.06430]
- Kallivayalil et al. (2018) [1805.01448]

### Sky Coverage

![](_page_22_Figure_1.jpeg)

#### Fraction of satellites originating with the LMC

- Drlica-Wagner et al. (2015): ~30%
- Deason et al. (2015): 1%-25%
- Jethwa et al. (2016): 33%
- Sales et al. (2017): 5%
- Dooley et al. (2015): 15%-25%

#### Fraction of LMC Satellites

![](_page_24_Figure_1.jpeg)

ADW, Bechtol et al. (2015)

![](_page_24_Figure_3.jpeg)

Deason et al. (2015)