DECaLS and DECaPS: DECam Surveys of the Northern Galactic Cap and Southern Galactic Plane

Edward Schlafly

Dustin Lang, Martin Landriau, Aaron Meisner, DECaLS and DECaPS teams

LBL

DECam NFC 2018 June 27, 2018

Eddie Schlafly (LBL)

Eddie Schlafly (LBL)

The DESI Legacy Imaging Surveys

- \blacktriangleright Extragalactic sky with $\delta > -10^\circ,\,14{,}000~{\rm deg}^2$
- ► *grz* filters
- Three telescopes and instruments
 - Blanco 4m + DECam (grz, $\delta < 33^{\circ}$)
 - Bok 2.3m + 90Prime (gr, δ > 33°)
 - Mayall 4m + Mosaic3 (z, $\delta > 33^\circ$)
- WISE forced photometry
- 3 epochs per filter
- ▶ Coadded depths >24.0, 23.4, 22.5 mag grz for small galaxies

DESI Legacy Imaging Survey Objectives

- DESI targeting
- Gas in IGM
- Finding and characterizing galaxy clusters
- High redshift quasars
- Milky Way dwarfs & streams

DESI Legacy Imaging Survey Objectives

- ► DESI targeting ← most effort is here!
- Gas in IGM
- Finding and characterizing galaxy clusters
- High redshift quasars
- Milky Way dwarfs & streams

Eddie Schlafly (LBL)

DECaLS and DECaPS

Eddie Schlafly (LBL)

DECaLS and DECaPS

Eddie Schlafly (LBL)

DECaLS and DECaPS

Eddie Schlafly (LBL)

DECaLS and DECaPS

Dynamic Exposure Times

- Ideally want each exposure to robustly detect emission line galaxies of a particular mass and redshift
- Using past exposures, guess exposure time necessary to achieve this
- In DESI, plan is to do this in real time from guider PSF

Eddie Schlafly (LBL)

SDSS

DECam Coadd

Eddie Schlafly (LBL)

SDSS sources

DECam Coadd

Eddie Schlafly (LBL)

New sources

DECam Coadd

Eddie Schlafly (LBL)

Blobs

DECam Coadd

Eddie Schlafly (LBL)

DECam Coadd

DECam Coadd

Eddie Schlafly (LBL)

 $\mathsf{Model} + \mathsf{Noise}$

DECam Coadd

Eddie Schlafly (LBL)

Model

DECam Coadd

Eddie Schlafly (LBL)

Residuals

DECam Coadd

Eddie Schlafly (LBL)

Eddie Schlafly (LBL)

Eddie Schlafly (LBL)

Eddie Schlafly (LBL)

Catalog Comparison

9 / 19

Catalog Comparison

9 / 19

WISE Satellite

- Wide-field Infrared Survey Explorer
- ▶ Mid-infrared: W1 (3.4µ), W2 (4.6µ), W3 (12µ), W4 (22µ)
- Primary survey: 2010-2011; reactivated in 2014-present
- \blacktriangleright W1 & W2: \sim 100 exposures of each part of the sky
- ▶ 6–7 arcsec FWHM

WISE photometry

Model for one source Full Model

(Targeted in BOSS W3 ancillary; quasar at z = 2.71)

Eddie Schlafly (LBL)

The DECam Plane Survey

- DECam survey of southern Galactic plane
- ► grizY filters
- ▶ $\delta < -30^{\circ}$, $|b| < 4^{\circ}$ (5° > $l > -120^{\circ}$)
- ▶ roughly main-sequence turn-off at 8.5 kpc through E(B V) = 1.5
- ▶ 23.7, 22.8, 22.3, 21.9, 21.0 mag in grizY in single exposures
- 3 epochs per filter, observed on adjacent nights
- 3D structure of the Milky Way's stars, gas, and dust

Source Density

Source Density

- 20 billion detections of 2 billion objects
- Extending to $|b| < 10^{\circ}$ now!

Eddie Schlafly (LBL)

- ► Concept: find and fit sources to steadily improve model of image
 - \blacktriangleright repeat source finding on residual images to find fainter, blended sources
 - Same idea as DAOPHOT, DOPHOT, DOLPHOT.
- Steps:
 - 1. Sky subtraction
 - 2. Source detection
 - 3. Position, flux, and sky determination
 - 4. PSF determination
 - 5. Repeat

- ► Concept: find and fit sources to steadily improve model of image
 - \blacktriangleright repeat source finding on residual images to find fainter, blended sources
 - Same idea as DAOPHOT, DOPHOT, DOLPHOT.
- Steps:
 - 1. Sky subtraction
 - 2. Source detection
 - 3. Position, flux, and sky determination
 - 4. PSF determination
 - 5. Repeat

- ► Concept: find and fit sources to steadily improve model of image
 - repeat source finding on residual images to find fainter, blended sources
 - Same idea as DAOPHOT, DOPHOT, DOLPHOT.
- Steps:
 - 1. Sky subtraction
 - 2. Source detection
 - 3. Position, flux, and sky determination
 - 4. PSF determination
 - 5. Repeat

- ► Concept: find and fit sources to steadily improve model of image
 - repeat source finding on residual images to find fainter, blended sources
 - Same idea as DAOPHOT, DOPHOT, DOLPHOT.
- Steps:
 - 1. Sky subtraction
 - 2. Source detection
 - 3. Position, flux, and sky determination
 - 4. PSF determination
 - 5. Repeat

- ► Concept: find and fit sources to steadily improve model of image
 - repeat source finding on residual images to find fainter, blended sources
 - Same idea as DAOPHOT, DOPHOT, DOLPHOT.
- Steps:
 - 1. Sky subtraction
 - 2. Source detection
 - 3. Position, flux, and sky determination
 - 4. PSF determination
 - 5. Repeat

- ► Concept: find and fit sources to steadily improve model of image
 - repeat source finding on residual images to find fainter, blended sources
 - Same idea as DAOPHOT, DOPHOT, DOLPHOT.
- Steps:
 - 1. Sky subtraction
 - 2. Source detection
 - 3. Position, flux, and sky determination
 - 4. PSF determination
 - 5. Repeat

Open Cluster NGC 2660

Eddie Schlafly (LBL)

Open Cluster NGC 2660

Very narrow sequence! Secondary binary sequence visible?

Eddie Schlafly (LBL)

CMDs

Eddie Schlafly (LBL)

CMDs

Eddie Schlafly (LBL)

CMDs

Eddie Schlafly (LBL)

CMDs

Eddie Schlafly (LBL)

PS1 Comparison

PS1 Comparison

The Legacy Survey Viewer

Browse the sky plane in Dustin Lang's viewer Things to do:

- Kitt Peak DESI footprint
- DECam DESI Footprint
- WISE
- Dust and protostars
- White dwarfs
- Clusters
- Nebulosity
- Crowding

The Legacy Survey Viewer

Browse the sky plane in Dustin Lang's viewer Things to do:

- Kitt Peak DESI footprint
- DECam DESI Footprint
- WISE
- Dust and protostars
- White dwarfs
- Clusters
- Nebulosity
- Crowding

http://legacysurvey.org/viewer

Conclusions

- DESI Imaging Surveys wrapping this year and early next year
- ▶ DECam Plane Survey complete in $|b| < 4^{\circ}$, ongoing extension to $|b| < 10^{\circ}$
- Large surveys largely untapped for near-field cosmology work
- Data publicly available at: http://legacysurvey.org http://decaps.skymaps.info
 - images
 - catalogs
 - viewer
 - SQL database via the NOAO Data Lab

Photometric Calibration

- We wish to place all of the DECam observations onto a common magnitude scale, removing the effect of sensitivity variations between
 - the system throughput from night to night
 - the opacity of the atmosphere (from night to night)
 - different regions of the DECam focal plane
- We achieve this by adopting a simple model for the system throughput over the course of the survey
- ▶ We constrain the model using repeat observations of the same stars

- Flat fields show ~ 5 mmag corrections
- True effect is presumably largely chromatic
- Pupil ghost
- Tree rings
- PSF-fitting-related artifacts
- Unstable S7 amplifier
- mounting board in Y

- Flat fields show ~ 5 mmag corrections
- True effect is presumably largely chromatic
- Pupil ghost
- Tree rings
- PSF-fitting-related artifacts
- Unstable S7 amplifier
- mounting board in Y

- Flat fields show ~ 5 mmag corrections
- True effect is presumably largely chromatic
- Pupil ghost
- Tree rings
- PSF-fitting-related artifacts
- Unstable S7 amplifier
- mounting board in Y

- Flat fields show ~ 5 mmag corrections
- True effect is presumably largely chromatic
- Pupil ghost
- Tree rings
- PSF-fitting-related artifacts
- Unstable S7 amplifier
- mounting board in Y

- Flat fields show ~ 5 mmag corrections
- True effect is presumably largely chromatic
- Pupil ghost
- Tree rings
- PSF-fitting-related artifacts
- Unstable S7 amplifier
- mounting board in Y

Median colors of stars

Eddie Schlafly (LBL)

Sky Subtraction

- Improve sky relative to best model so far
- Sky determination should give zero if the model is perfect
- Needs to be fast
- \blacktriangleright We just take the median in 20 \times 20 pixel regions
- This should change depending on seeing!

Source Detection

- Convolve image with PSF
- $ightarrow 5\sigma$ peaks are candidate sources
- Candidate sources passing blending criteria added to source list

Source Detection

- Convolve image with PSF
- $ightarrow 5\sigma$ peaks are candidate sources
- Candidate sources passing blending criteria added to source list
- $S_I/S_M > 2B$ or $(S_I/S_M > B) \& (I/M > B)$
 - / residual image
 - M model image
 - S_I signal-to-noise of residual image
 - S_M signal-to-noise of model
 - *B* blending threshhold

Position, flux, and sky determination

- Everything is a point source—life is easy!
- Sky and fluxes are completely linear
- Positions can be linearized via first derivative
- Plug into large sparse linear algebra code
- LSQR, conjugate-gradient type solver, Stanford Systems Optimization Laboratory
- \blacktriangleright We fit up to 30k stars per 1024 \times 1024 pixel region, for \sim 100k simultaneous parameters

PSF determination

- Start with best model so far
- Get model for image from linear least squares fit
- Subtract neighbors around each star from model
- Use newly isolated stars to model PSF
- (though we probably should be thinking about an EM solution...)

DECaPS PSF model

- start with "ideal-seeing" PSF models
- find parameters of spatially-varying Moffat that convolve with ideal-seeing PSF to match neighbor-subtracted PSFs
- pixel-by-pixel spatially varying model of PSF core (9 \times 9 pixel)
- Need to do better!
 - \blacktriangleright "analytic" model tends to be dominated by core and fail in the wings ($\sim 2^{\prime\prime}$ from center)
 - "aperture correction" is the dominant source of photometric calibration error
 - diffraction spikes don't quite match
 - Iots of structure in PSF wings!
 - variations in PSF with color and brightness

Ideal-seeing PSFs

- average PSFs over large numbers of bright stars on very good seeing nights
- Extend 255 pixels from PSF center
- Deconvolved with good-seeing Moffat
- Modeled as sum of Moffats and diffraction spikes
- \blacktriangleright \rightarrow noise-free, ideal-seeing PSF
- needs improvement? ideal-seeing PSFs often dominate in the wings

Eddie Schlafly (LBL)

► How should one deal with

Eddie Schlafly (LBL)

► How should one deal with ...

- How should one deal with nebulosity?
- No good techniques I know of!
- Only 0.1% of footprint affected
- mask and apply stronger blending & sharpness cuts in these regions

- How should one mask nebulosity?
- Simple approaches (variance in sky estimates on different scales) break down around bright stars and in crowded regions
- ▶ Neural network trained on ~5,000 hand-classified 512 × 512 pixel images
- Ultimately did an excellent job flagging nebulous regions
- ▶ This image: 100% nebulous √

31 / 19

Photometric Calibration

- ► We calibrate each detection with a zero point Z so that m = m_{inst} + Z
- We take Z = a kx + f, with
 - a: system zeropoint (one parameter per night)
 - k: atmospheric opacity (one parameter [whole survey!])
 - x: airmass of observation
 - f: flat field (10,000 parameters)

• We then solve for the parameters of this model for Z, to minimize

$$\chi^2 = \sum_{o} \sum_{i} \frac{(m_{o,i} - \overline{m_o})^2}{\sigma_{o,i}^2}$$

- Note: 10,000 parameters, constrained using hundreds of millions of observations
- Same technique as Padmanabhan et al. (2008) for the SDSS

Eddie Schlafly (LBL)

Photometric Calibration Nightly QA

- 5 mmag precision in any given exposure
- ▶ 1% rms residuals, correlated with wings of PSF
- \blacktriangleright poor "aperture correction"; c.f. $\sim 3~mmag$ in PS1
- we should have enough information to get this right!

Eddie Schlafly (LBL)

Mosaicing scheme

- > Don't want to fit 4096×2048 pixel images simultaneously
- Cut into 1024 × 1024 pixel blocks (primary plus 50 pix overlap)
- Add stars from primary regions of other blocks to model for this block, fixing their fluxes.
- Really should have done sky subtraction, source detection, and PSF fitting steps on full image, and just introduced a mosaicing scheme for the least-squares fit.