

#### **MIDAS** simulation

Washington Rodrigues de Carvalho Jr.

The Microwave Detection Workshop Chicago - October 4th 2010



- Shower simulation
  - Gaisser-Hillas generation
  - Geometry generation and time
  - Profile sampling
  - Flux calculation
- Detection simulation
  - A Horn relative gain calculation
  - ADC count simulation
  - Triggers

#### **GH** generation

- 6 Based on GAP 2005-87
- 6 GH parameters  $X_0$ ,  $\log N_{max}$ ,  $X_{max}$  and  $\lambda$  have approximate gaussian distributions. (first interaction depth  $X_1$  exponential).
- 6 Mean and  $\sigma$  obtained from CORSIKA fits for every parameter (used linear interpolation in energy).
- 6 GH described in slant depth (describes any  $\theta$ )
  - ▲ Used a factor  $f = \cos \theta$  to transform to vertical depth, and  $X_1$  to dislocated the GH.

$$N(X) = N_{max} \left(\frac{\frac{X}{f} - X_1 - X_0}{X_{max} - X_0}\right)^{\left(\frac{X_{max} - X_0}{\lambda}\right)} \exp\left(\frac{X_{max} - \frac{X}{f} - X_1}{\lambda}\right)$$

#### Shower Geometry and time origin

- Antenna system of coordinates (cartesian and spherical).
  - Origin on antenna.
  - Antenna FOV facing positive y, z is vertical.
- 6 Ground core position  $\vec{c}$  equally distributed in area.
- 6 Isotropic shower direction  $\hat{d}$ .
- 5 Time t = 0 when shower front hits ground.



#### **Profile Sampling**

- 6 Profile sampling time  $t_s \rightarrow$  sampling legth  $dl = c \cdot t_s$
- 6 Setable maximum sampling altitude  $A_{max}$  (saves time and disk space)



## Emission Points $\vec{P_i}$ , $N_i$ and ratio $\rho_{r_i}$

- 6 Calculated from dl and  $\vec{d}$ 
  - $P_{xi} = c_x + i \cdot dl \cdot d_x$

$$P_{yi} = c_y + i \cdot dl \cdot d_y$$

$$P_{zi} = i \cdot dl \cdot d_z$$

- 6 Altitude of emission point i:  $A_i = P_{zi} + A_{ant}$  is transformed to vertical depth  $X_i$  using Linsley parametrization.
- Number of particles N<sub>i</sub> at emission point using GH.
  N<sub>i</sub> = N(X<sub>i</sub>)
- <sup>6</sup> Density ratio  $\rho_{r_i} = \rho_i / \rho_0$  at emission altitude  $A_i$  is calculated using atmosphere77 parametrization.

#### Flux calculation

$$F_{i} = F_{ref} \cdot \rho_{r_{i}} \cdot \Gamma \cdot \left(\frac{D_{ref}}{|\vec{P}_{i}|}\right)^{2} \cdot \left(\frac{N_{i}}{N_{ref}}\right)^{S}$$

- S = 1 or 2: Linear or quadratic scaling (Gorham)
- $F_{ref} = 4 \cdot 10^{-16} W/m^2 Hz$ : Reference flux (Gorham)
- 6  $\Gamma = L_0/L_{\tau} = 4.62$ : Correction due to chamber size (Gorham)
- 6  $D_{ref} = 0.5m$ : Distance from antenna (Gorham)
- 6  $N_{ref}$ :  $N_{max}$  of the average GH for an  $E_{ref} = 3.36 \cdot 10^{17} eV$ shower (Gorham)



- 6 Emission time:  $-\frac{P_z}{c \cdot d_z}$
- 6 Reception delay:  $\frac{|\vec{P_i}|}{c}$

$$t_i = -\frac{P_z}{c \cdot d_z} + \frac{|\vec{P_i}|}{c}$$



#### Flux output

- Depends on antenna altitude.
- 6 Depends on emission scaling.
- Obes not depend on any other antenna parameters.
- A single flux simulation can be used for multiple antenna settings (e.g. FOV elevations)
- Saves all *i* emission points for each shower:  $(P_R^i, P_{\theta}^i, P_{\varphi}^i, P_x^i, P_y^i, P_z^i, t^i, F^i, \chi^i)$
- Saves shower data for each of the *j* showers:  $(E_0^j, \theta^j, \varphi^j, c_x^j, c_y^j, t_0^j, R_p^j, \psi^j, [p/Fe]^j)$



- Plane camera with 53 horns.
- 6 Horns divided into 4 boards.





- Ruze, Parabolic Feed Displacement, IEEE transactions on antennas and propagation, september 1965.
- Double integral using cerlib's DADMUL.
- 6 Camera shadow not taken into account.
- $\theta \in [0, 20^\circ], \phi \in [0, 360^\circ]$  in steps of  $0.1^\circ$



### Gain examples



### Gain examples - central pixel



MIDAS simulation - p. 13





MIDAS simulation - p. 14

# Full gain map



# Full gain map



#### ADC count simulation

- 6 Input:
  - Emission point data (Flux, time, position, etc...)
  - Gain Map (Normalized to 1 at center of central pixel)
  - Shower Data ( $E_0$ , core position, etc...)
- 6 Output: Root files
  - simulation format
  - MidasEvent (midas-online)
- 6 Some parameters:
  - FOV elevation
  - Acquisition time  $t_{acq}$  (50ns)
  - △ Calibration parameters (baseline,  $\sigma_{ADC}$ , slope, etc...)
  - Trigger parameters (FLT window, thresholds, etc...)

#### Time references and Coordinate systems

#### 5 Time references:

- Flux calculation time reference
  - t=0 when shower hits ground
- ADC time reference
  - t=0 when shower enters FOV of antenna
- MIDAS time reference
  - t=0 25 $\mu s$  before 1st SLT
- 6 Coordinate systems:
  - GRD system: same as Flux simulation
  - ▲ FOV system *z*-axis in the direction of the central pixel
  - Systems related by a rotation around x-axis of  $\theta_{FOV}$
  - Gain map described in FOV system
    - independent of  $\theta_{FOV}$

#### **Coordinate Systems**



#### Procedure

- Solution Read emission point in GRD system  $(\theta_{GRD}, \varphi_{GRD})$
- Solution Rotate by  $\theta_{FOV} \rightarrow$  Emission point in FOV system  $(\theta_F, \varphi_F)$
- If emission point is in FOV  $\theta_F < 20^\circ$  loop over all horns
  - Calculate gain  $G(\theta_F, \varphi_F)$  for the emission point
    - Gain map interpolation
  - △ Calculate "power"  $P = G \cdot F$
  - Look for overall  $t_{min}$  and  $t_{max}$ 
    - At  $t = t_{min}$  shower enters FOV.
    - At  $t = t_{max}$  shower leaves FOV or hits ground.
  - Save data (horn#, power P and time t) internally
    - A single emission point can be seen by several horns

#### ADC time and acquisition

- 6  $t_{min}$  relates Flux time and ADC time:  $t_{ADC} = t_{flux} t_{min}$
- Saved data time is transformed to ADC time.
- 6 Flux is sampled starting at  $t_{ADC} = 0$  at equal time intervals  $t_{acq}$ .
- Saved data "power" is interpolated (for each horn at the sampling times), obtaining a sampled "power"



#### Power to ADC counts

- Interpolated power is transformed to ADC counts using calibration parameters:
  - baseline power in sfu units  $P_{base} = 2.32$
  - baseline  $ADC_{base} = 11180$
  - △ slope S = 0.00584
  - $dB_{ref} = S \cdot P_{base} + 10 \cdot \log_{10} P_{base}$
  - $\ \, \bullet \ \, \sigma_{ADC}=71$
- 6  $P_{tot} = P \cdot 10^{-22} + P_{base}$
- $\ \, \mathbf{0} \ \, dB = 10 \cdot \log_{10} P_{tot}$
- $\bullet \quad N_{ADC}^{nonoise} = \frac{(dB_{ref} dB)}{S}$
- 6  $N_{ADC} = N_{ADC}^{nonoise} + Noise$  (sampled from a  $\sigma_{ADC}$  gaussian)



- 6 Running sum of 20 bins ( $ADC_{base} N_{ADC}$ )
- $\bullet$  Triggers when sum greater than threshold T
- Sets window (FLT window) for SLT search





MIDAS simulation - p. 24

#### SLT and Midas Output

- Analysis separated by boards
- General Solution of the second sec
- 5 The 1st SLT sets the origin for the MIDAS time reference
  - $t = 0.25 \mu s$  before 1st SLT
  - ▲ Midas event ends at  $t = 25 + \text{PostSLTWindow } \mu s$
- 6 When a pattern is found, the pattern code is saved
- 6 MIDAS output
  - Times are transformed to the MIDAS time reference
  - An extra output file is created in the MidasEvent format

# **Questions?**





















#### **Results after cuts**

#### Uhecron 50GeV, 30GeV and 20GeV

| $E_U (EeV)$ | $E_p \ (EeV)$ | $N'_u/N_u$ | $N_p'/N_p$ | $N_p'/N_T'$ |
|-------------|---------------|------------|------------|-------------|
| 320         | 320           | 0.417      | 0.022      | 0.081       |
| 352         | 320           | 0.402      | 0.043      | 0.152       |
| 108         | 100           | 0.366      | 0.039      | 0.143       |
| 54          | 50            | 0.299      | 0.016      | 0.080       |

| $E_U (EeV)$ | $E_p \ (EeV)$ | $N'_u/N_u$ | $N_p'/N_p$ | $N_p'/N_T'$ |
|-------------|---------------|------------|------------|-------------|
| 352         | 320           | 0.400      | 0.053      | 0.178       |
| 108         | 100           | 0.344      | 0.043      | 0.159       |
| 54          | 50            | 0.257      | 0.015      | 0.078       |

| $E_U (EeV)$ | $E_p \ (EeV)$ | $N'_u/N_u$ | $N_p'/N_p$ | $N_p'/N_T'$ |
|-------------|---------------|------------|------------|-------------|
| 352         | 320           | 0.390      | 0.062      | 0.198       |
| 108         | 100           | 0.359      | 0.057      | 0.188       |
| 54          | 50            | 0.411      | 0.071      | 0.198       |









