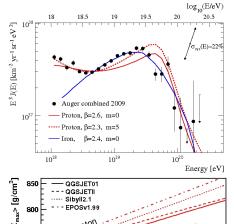
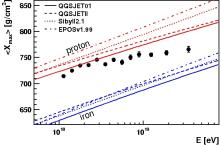


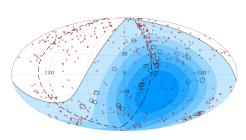
Report on PhD activity: EASIER

Silvia Gambetta

Università degli studi di Genova and INFN Genova: Alessandro Petrolini LPNHE Paris: Antoine Letessier-Selvon

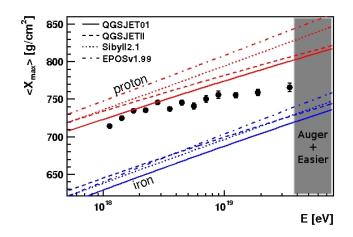

Ferrara, 29-9-2010


Outline


- Introduction to EASIER
- The prototype detector
- Noise measurements
- Expected signal
- Future plans

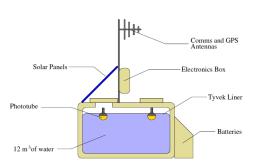
The collaboration: J. Aublin, M. Avenier, C. Bérat, X. Bertou, P. Billoir, C. Bonifazi, J. Chauvin, O. Deligny, Silvia Gambetta, P. Ghia, H. Lebbollo, D. Lebrun, I. Lhenry-Yvon, A. Letessier-Selvon, C. Macolino, I. Mariş, F. Montanet, M. Münchmeyer, R. Randriatoamanana, P. Stassi, A. Stutz

Auger results



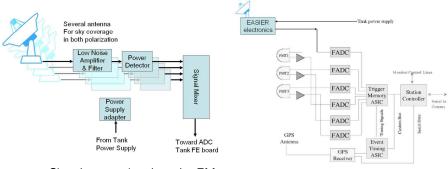
- GZK suppression: mass composition important
- $< X_{max} >$: composition shows a trend towards heavy nuclei
- Data up to March 2009: 38% correlate

EASIER's goal


- Improve particle indentification of UHECR
- Measure UHECR composition at higher energies
- Measure hadronic cross section at higher energies
- Constraints and parametrization of interaction models

The detector

Extensive Air Shower Identification using Electron Radiometer



- Integrated radio receiver
- EM component of the shower
- Power trace
- Local DAQ

Summary

- Detection of radio emission of the EM cascade
- Two possible bands: VHF (10-100 MHz) and C+K (1-10 GHz)
- Trigger and timing via tank DAQ

- Signal proportional to the EM energy
- ullet Time shape related to the cascade evolution and X_{max}
- Muonic signal in the tank by sustraction

 $\approx 100\%$ duty cycle telescope with the coverage of a surface detector, integrated in the array

6/32

Plan

VHF band:

- Antenna's selection and test
- Noise evaluation
- Test of the acquisition chain
- Prototype installation
- Data taking and analysis

C+K band:

- Find the best antenna
- Test the whole receiving system and tank connection
- Signal simulations
- Prototype installation
- Data taking and analysis

Radio physics

Signal: geosynchrotron radiation

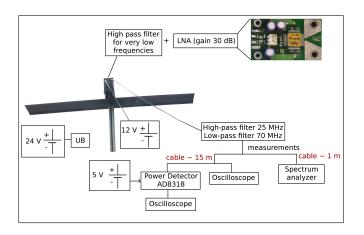
$$\mathbf{E}\left[\mu\mathrm{V/m}
ight]=178rac{E_0}{10^{17}\,\mathrm{eV}}(-\mathbf{v} imes\mathbf{B})\cos heta\exp(rac{-d}{D_0(heta)})$$

State of art in the detection:

- Collimated radiation
- Main experiments: LOPES, CODALEMA, AERA
- Large areas at low cost
- Problems in trigger setup
- Actual detectors few hundred meters apart

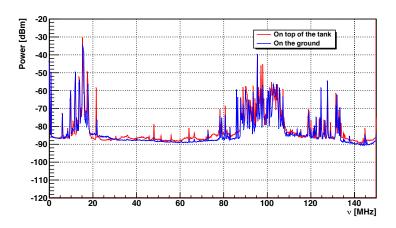
External trigger can overcome these difficulties

Plan of noise measurements


Noise measurements:

- Environmental noise
- Constant noise from the tank electronics
- Noise from PMTs signal
- Test of our acquisition chain
- Measurement sensitivity
- Trigger rate

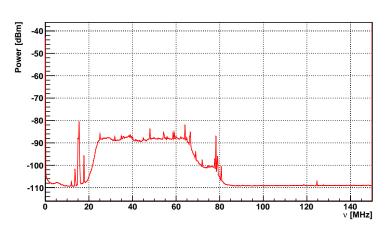
Measurements taken in Orsay (Paris) at the Auger prototype tank



Experimental setup

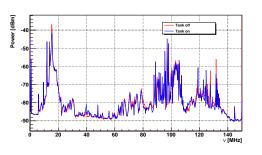
- FAT dipole antenna from the CODALEMA collaboration
- ullet LNA from CODALEMA, gain $\sim 30\,\mathrm{dB}$
- Power Detector

Environmental noise

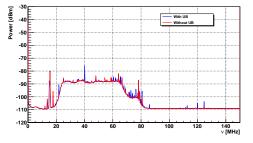


- Noise level on top of the tank of $-128\,\mathrm{dBm/Hz}$
- ullet Difference between the spectra of: $(1.17 \pm 0.17)\,\mathrm{dBm}$

Antenna lobes not influenced by the position with respect to the tank

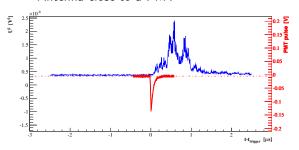

Electric field

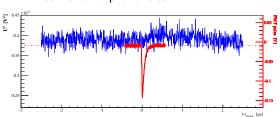
Spectrum on top of the tank with filters (25-70 MHz)



$$P = 7.61 \cdot 10^{-9} \,\mathrm{W} \qquad E = \frac{U_{out}}{I_{eff}} = 4.11 \cdot 10^{-5} \,\mathrm{V/m}$$

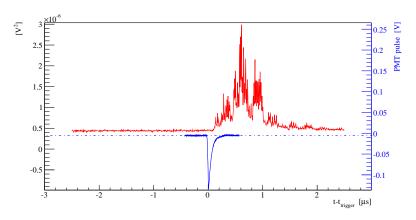
Constant noise from the tank


 No emission visible from the PMTs


Noise at 40 MHz from the UB

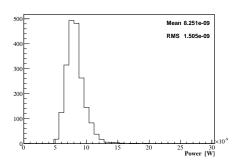
Noise from PMTs

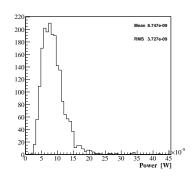
Antenna close to a PMT



Antenna on top of the tank

- 2000 traces enrigestered
- Squared averaged signal
- Peak value: power in a $1\,\mu\mathrm{s}$ window
- Peak value: power in a 100 ns window
- Antenna on top of the tank is a good configuration


Power detector measurement


- Averaged traces
- Same response obtained without the Power Detector
- Same observables considered to estimate the noise

Sensitivity

- Distribution of the values of the average power measured in a chosen time window for 2000 traces
- The sensitivity is the variance of the distribution
- ullet Two parameters computed for two different windows: $1\,\mu\mathrm{s}\ 100\,\mathrm{ns}$
- Parameters computed before the trigger and around the maximum

baseline: $\sigma_{1\,\mu s} = 1.50\,\mathrm{nW}$

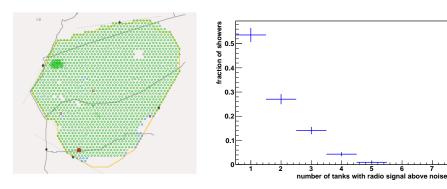
around maximum: $\sigma_{100\,\mathrm{ns}} = 3.73\,\mathrm{nW}$

Summary of noise measurements in the VHF band

 The best configuration for EASIER is the antenna on top of the tank

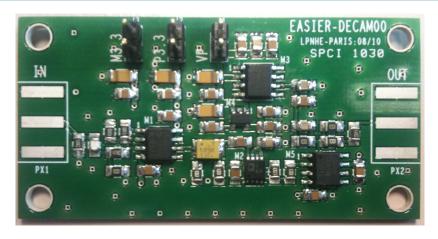
position	signal quantity	$E\left[\mu V/m\right]$	P [dBm]
top of tank	baseline	54.39	-48.76
top of tank	1μ s maximum	55.67	-48.55
top of tank	100 ns maximum	56.14	-48.48

Noise from the PMTs for the $1 \mu s$ window: **0.19 dB** Noise from the PMTs for the 100 ns window: **0.28 dB**


Sensitivity

Measurement	σ_W [nW]	$\sigma_{E} [\mu V/M]$
$1\mu s$ baseline	1.50	4.95
100 ns baseline	3.61	11.97
$1\mu s$ peak	1.71	5.55
100 ns peak	3.73	11.96

Expected trigger rate


Event number expected in the Vieira hexagon:

- SD events from May to August 2010
- Quality cut: T5
- Corresponding electric field higher than sensitivity

5 events/day in our hexagon

Stage of the VHF

Board with all the components just arrived in Paris! Ready to complete the tests of the acquisition chain with the Auger UB

The Molecular Bremsstralhung Radiation

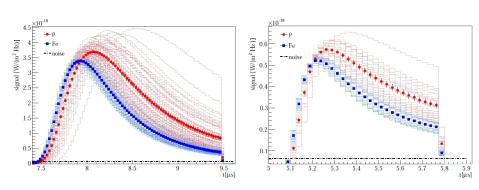
Starting point: Gorham et al. "Observation of microwave continuum emission from air shower plasmas", Phys.Rev.D78,2008.

- EAS particles dissipate their energy through ionization
- A plasma of $T_e \simeq 10^{4-5} \, \mathrm{K}$ is created
 - Secondary electrons excite $N_2 \Rightarrow$ fluorescence radiation
 - Secondary electrons themselves produce their own emission like bremsstralhung in field of neutral molecules: EMISSION IN THE MICROWAVE RANGE

Characteristics:

- Isotropic radiation ⇒ FD like detector
- Around 100% duty cycle
- Minimal atmospheric attenuation (even with clouds and rain)

State of art:


- Observed in laboratory at accelerator experiment
- Never observed in field
- Main experiments: AMBER, MIDAS, CROME

Again the slave trigger helps improving problem of detectability due to signal to noise ratio

Signal calcualtion

Scaling of the accelerator data from the Gorham paper taking into account the shower development and antenna FOV. Expected intensity:

- ullet Coherent emission $I \propto N_e^2$
- ullet Uncoherent emission $I \propto N_{
 m e}$

Traces expected at 900 m, for $\theta = 38^{\, \mathrm{o}}$

Expected signal

Rescaling of Gorham signal:

$$S(1000)_{Ne} \simeq -170 \, \mathrm{dBm}$$

 $S(1000)_{Ne^2} \simeq -155 \, \mathrm{dBm}$

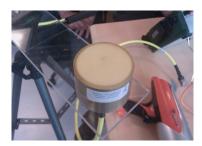
Detector design parameters:

$$A_{eff} \cdot \Omega = \lambda^2$$

Effective area	$0.007 m^2$
Field Of View	$\pi/2$
λ	10 cm
$\Delta \nu$	1 GHz
Δt	25 ns

Minimum detectable signal:

$$\Delta I = \frac{k_B \cdot T_{sys}}{A_{eff} \sqrt{\Delta t \Delta f}}$$


For $T_{sys} \simeq 10\,\mathrm{K} \Rightarrow \Delta I \simeq -174\,\mathrm{dBm}$

The signal rescaled is above the thermal noise!

Challenge: lower T_{sys} as much as possible

Experimental setup

- Spiral antenna
- Commercial horn antenna
- Low noise cables
- Spectrum analyzer

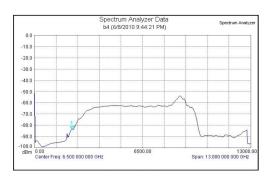
Model: DMX241

Digital Ready Expanded C Band LNBF

Input Frequency: Output Frequency: Noise Figure: Gain: Polarity: LO Frequency: Image Rejection Switch Voltage Vertical:

Vertical: Horizontal: Output Impedance: Output Connector: 3.4-4.2GHz 950-1750MHz 13K 70dB 1 (Hor or Ver) 5150MHz 45dB Min

14V DC 18V DC 75Ohms F-Female



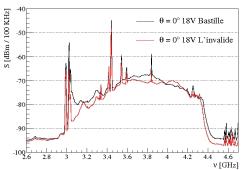
WS International Global Satellite Distribution
1200 Cobb Parkway North ~ Sulte 100B ~ Marietta, GA 30062-2418 USA
Tel: +770 420 5272 ~ Fax: +770 420 5350
Email: sales@widigital.com ~ Web: www.wsidigital.com

Measures with the spiral

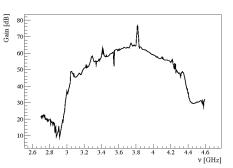
Measurements taken in Argentina to study the environmental noise:

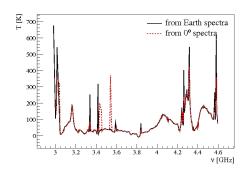
- Spiral antenna
- Two LNA: $G = 38 \, dB$, $N = 2 \, dB$, $B = 2 9 \, GHz$

Clean band: 3-7 GHz


Thermal noise dominated by the LNA noise

Measures with the horn

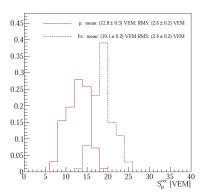

Measurements taken in Paris:


- Horn antenna
- Integrated LNB

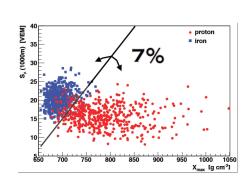
Horn characterization: gain and temperature

Preliminary characterization:

- $P = k_B \cdot T \cdot \delta \nu \cdot G$
- $T_{ground} = 300 \, \text{K}, \ T_{sky} = 10 \, \text{K}$
- ullet System temperature computed inverting the equation: $T\sim 20\,\mathrm{K}$


Summary of the C+K

- Signal calculation from Gorham paper
- Two antennas tested: spiral and horn
- Horn antenna seems more promising
- Background measurements in Argentina
- Preliminary characterization of the horn antenna


 \Rightarrow work in progress

Analysis tools

Study of shower universality to recover the muonic signal from the electromagnetic signal detected by EASIER

 S_{μ} by substraction of the S_{em} measured by EASIER

Anti-correlation between X_{max} and S_{μ} from simulated showers

Study of the recovery of muonic signal from Golden Hybrids events 30/32

Conclusions and future plans

VHF band

Done:

- Antenna chosen and tested
- Acquisition chain partially tested
- Noise from the tank evaluated
- Expected trigger rate computed

To do:

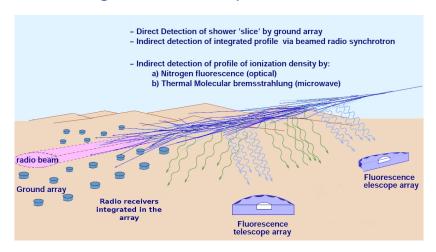
Test of the complete acquisition chain

First deployment foreseen in november

C+K band

Done:

- Different types of antenna tested
- Signal and noise calculation


To do:

- Choice of the antenna
- Evaluation of the system temperature
- Take into account the antenna response in simulations

First deployment foreseen in december

Final configuration

Moving towards a more complete detection of EAS

