MIDAS: Trigger system

Microwave Workshop Chicago, October 6th 2010

FADC boards

Debug pins FPGA

- FADC boards designed at UofC.
- 16 14-bit FADCs per board.
- Sampling frequency of 20 MHz
 > 50 ns.
- 4 independent boards to control the whole camera and 1 master board to coordinate the triggers from the 4 slave boards.

Board 2

Analog Electronics

First Level Trigger (FLT)

- Trigger at pixel level.
- The running sum of 20 bins (1 s) exceeding a certain threshold.
- This threshold is regulated to ensure a FLT rate per channel of 100 Hz.

Time (50 ns)

10 s (cross-checked with simulations)

s to allow for coincidences.

MiDi (6 h run) with filters

📉 MiDi, the Midas event display (r63M) – Midas_2010_09_30_09h56m01s_daq.root

Event Background

MiDi (6 h run) no filters

X MiDi, the Midas event display (r63M) - Midas 2010 03 30 05h52m54s dag.root Event Background 150 F

Second Level Trigger (SLT)

- Channels with a FLT status are used to search for patterns compatible with a shower track.
- The threshold regulation ensures a SLT rate due to accidentals of < 1 Hz.

Basic Patterns

In the old configuration we required 3-fold patterns basic in these basic ones.

Second Level Trigger (SLT) Old configuration

Independent SLT per board

Second Level Trigger (SLT) New configuration

Global SLT trigger

Synchronization and alignment is crucial

SLT rate

• The 4-fold trigger reduce the rate of random coincidences:

- 3-fold patterns and 20 s: 0.4 Hz
- 4-fold patterns and 20 s: 1.e-3 Hz
- 4-fold patterns and 10 s: 3.e-4 Hz

• With the new global implementation we increase the efficiency of the camera. On the other side, the 4-fold requirement we loss some sensitivity. Assuming a quadratic scaling:

- 3 pixels: 1.1 events/day
- 4 pixels: 0.8 events/day

28% loss assuming the 3-pixel events are distinguishable.

Higher Levels

• The data acquisition and threshold regulation are inhibited when the SLT rate is higher than a pre-set value.

• The daq resets the threshold automatically after a certain time without SLT. The new input value is an average of the actual baseline. To deal with sudden changes that the regular threshold regulation is not able to follow.

Higher Levels

• The data acquisition and threshold regulation are inhibited when the SLT rate is higher than a pre-set value.

• The daq resets the threshold automatically after a certain time without SLT. The new input value is an average of the actual baseline. To deal with sudden changes that the regular threshold regulation is not able to follow.

Event data stream

After a SLT, a 100 s stream of data (25 s corresponding to data before the SLT trigger) is stored.

All these trigger conditions are already implemented in the simulations. ¹⁴

MIDAS: Absolute calibration

Microwave Workshop Chicago, October 6th 2010

Absolute calibration with the Sun

System temperature at data taking position

In daq position (phi=145, theta=15) T_{syst} is a little bit larger. Comparing the number of ADC counts for the baseline in both daq and Sun pointing directions we can estimate T_{syst} in daq position.

For the same day of the previous calibrations with the Sun the system temperature at daq position ~ 120K ($T_{syst}(daq) = 1.12T_{syst}(Sun)$).

In general, for 2 different baselines:

$$\frac{P_{b1}}{P_{b2}} = \frac{T_{b1}}{T_{b2}} = 10^{\frac{B}{10}(N_{ADC}(b1) - N_{ADC}(b2))}$$

System temperature for both polarizations

Thursday, May 13. 2010

SUN CALIBRATION. TESTING THE POLARIZATION

Pointing direction (11am, +19V): 127.41, 57.27 Pointing direction (12am, +16V): 152.92, 64.51

Run: Midas_2010_05_13_10h17m37s_bkg.txt

Results (11 am, +19V):

Baseline 11220. Peak 8835. Δn = 2385 FNobeyama = 73 SFU. Fsky+sys = 3.079 10-22 W/m²/Hz Tsky+sys = ½·Aeff·k = 112K

Results (12 am, +16V):

Baseline 11290. Peak 8862. Δn = 2428 FNobeyama = 73 SFU. Fsky+sys = 2.8992 10-22 W/m²/Hz Tsky+sys = ½-Aeff·k = 105K

Cross-checking with the Crab

v (GHz)

1.117

1.304

1.765

1.4

2.0

2.29

2.74

3.15

3.38

3.96

4.08

5.0

Cross-checking with the Moon

$$\Delta T = T_{syst} \cdot 10^{(X_{moon}(dBm) - X_{syst}(dBm))/10} = 29 K$$

$$T_{moon} = \frac{\Delta T \cdot \Omega_A}{\Omega_{Moon}} = \frac{29 \cdot 1.4^2}{\pi (0.56/4)^2} = 230 K$$

