Response and discrimination of Low-Energy Electronic and Nuclear Recoils in Liquid Xenon

Qing Lin

Physics Department, Columbia University
What to measure in LXe

Gamma Background \rightarrow ER
DM Candidate WIMP \rightarrow NR
DM Candidate Axion \rightarrow ER

Electronic Recoils (ER) ROI
Nuclear Recoils (NR) ROI

ER/NR discrimination
ER/NR signal response
Detector (LXe-TPC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC Diameter [mm]</td>
<td>57</td>
</tr>
<tr>
<td>maximum drift length [mm]</td>
<td>10</td>
</tr>
<tr>
<td>Cathode-Screen [mm]</td>
<td>21</td>
</tr>
<tr>
<td>Anode-Gate [mm]</td>
<td>5</td>
</tr>
<tr>
<td>Sensitive Volume [g]</td>
<td>77</td>
</tr>
<tr>
<td>Fiducial Volume [g]</td>
<td>3</td>
</tr>
<tr>
<td>Top PMT number/Type</td>
<td>4/R8520</td>
</tr>
<tr>
<td>Bottom PMT number/Type</td>
<td>1/R11410</td>
</tr>
</tbody>
</table>
Detector performance

Reconstruction resolution 0.37\(+\)-0.06mm

Best resolution \((\sigma/E)\) = 1.60\% @ 662keV @ 500V/cm

Very good energy resolution in LXe, meaning the systematic fluctuation of our detector is small.
Signal model in LXe

\[S1 = a \cdot N_{ph} = a \left(\frac{N_{ex}}{N_i} + r \right) N_i \]

\[S2 = b \cdot N_e = b(1 - r) N_i \]

- \(N_i \) -- number of ion-electron pairs
- \(a \) -- photon detection efficiency (PDE)
- \(b \) -- electron amplification factor (EAF)
- \(r \) -- recombination fraction
Recombination model

\[
\frac{\partial N_+}{\partial t} = -\mu_+ E \cdot \nabla N_+ + d_+ \nabla^2 N_+ - \alpha N_+ N_- \quad \text{ION}
\]

\[
\frac{\partial N_-}{\partial t} = \mu_- E \cdot \nabla N_- + d_- \nabla^2 N_- - \alpha N_+ N_- \quad \text{ELECTRON}
\]

Birk-Doke Law (High-energy case, Drift and diffusion process neglected):

\[
r = \frac{A \cdot (dE / dx)}{1 + B \cdot (dE / dx)} + C
\]

A and B proportional to \(\alpha \), A/B+C=1

Thomas-Imel Box (TIB) model (Low-energy case, drift of electron taken into account):

\[
r = 1 - \frac{1}{\xi} \ln(1 + \xi), \quad \xi = \frac{\alpha N_i}{4a_0^2 \mu E}
\]

From NEST (JINST 6, P10002)
Detector operation

COMSOL simulation shows the field = \textbf{3.93}kV/cm.

137Cs calibration every day

<table>
<thead>
<tr>
<th></th>
<th>Field[V/cm]</th>
<th>PDE[%]</th>
<th>EAF[PE/e-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS above gate</td>
<td>236 - 1920</td>
<td>15.5+-.2</td>
<td>31.8+-.5</td>
</tr>
<tr>
<td>LS below gate</td>
<td>3930</td>
<td>20.0+-.1.7</td>
<td>20.0+-.1.7</td>
</tr>
</tbody>
</table>
The 3.0% and 2.6% variation of the PDE and EAF (CA), respectively, between anti-correlation and 1kV/cm data are within the 4% uncertainty of NEST.

\[
\begin{align*}
\frac{S1}{\varepsilon} &= a\left(\frac{N_{ex}}{N_i} + r\right)W_i \\
\frac{S2}{\varepsilon} &= b\left(1 - r\right)W_i
\end{align*}
\]

\[
W_q = \frac{W_i}{(N_{ex}/N_i + 1)} = 13.7\text{eV}
\]

Slope = \(-b/a\)

Intercept (Light yield) = \(a\ W_q\)

Intercept (S2 yield) = \(b\ W_q\)
Measured recoils

NR matches with NEST prediction.
ERs don't.
Update TIB parameters

\[r = 1 - \frac{1}{\xi} \ln(1 + \xi), \quad \xi = \frac{\alpha N_i}{4a_0^2 \mu E} \]

Source of systematics	Value on (PDE and EAF)
Gain difference between 137Cs calibration and recoil measurements | 7.2%
PDE and EAF evolution | 1.5%
NEST global uncertainty | 4%
E-life induced S2 variation | 1.2%
The PDE(EAF) is 4.5% (11.9%) lower if using whole volume than using FV in this work.

\[
py' = \frac{S_1}{(S_1/a' + S_2/b')} \cdot W_q
\]

\[
= \frac{1}{W_q} \cdot \frac{\frac{b}{b'}}{\frac{a}{a'}} \cdot py
\]

\[
\frac{b}{b'} < 1 \Rightarrow py' > py
\]

\[
\frac{a}{a'}
\]
Discrimination observed in previous experiments

<table>
<thead>
<tr>
<th>Field [kV/cm]</th>
<th>PDE [%]</th>
<th>energy ROI</th>
<th>Gamma rejection power [%]</th>
<th>Nuclear recoil acceptance [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEPLIN-II[14]</td>
<td>1.00</td>
<td>5-20 keVee</td>
<td>98.5</td>
<td>50</td>
</tr>
<tr>
<td>XENON10[9]</td>
<td>0.73</td>
<td>4.5-26.9 keVnr</td>
<td>99.86</td>
<td>45 ~ 49</td>
</tr>
<tr>
<td>XENON100[7]</td>
<td>0.53</td>
<td>6.6-43.3 keVnr</td>
<td>99.75</td>
<td>20 ~ 60</td>
</tr>
<tr>
<td>LUX[8]</td>
<td>0.18</td>
<td>3.4-25.0 keVnr</td>
<td>99.6</td>
<td>50</td>
</tr>
<tr>
<td>PandaX</td>
<td>0.67</td>
<td>4-10 keVnr</td>
<td>99.6</td>
<td>50</td>
</tr>
</tbody>
</table>

Electric field [kV/cm]
Review of signal fluctuation

Incoming particle

Xe

Xe*

Xe^+

Xe_2^+

e^-

Fano fluctuation
Gaussian
\(\sim \sqrt{FN}\)
F=0.059

PMT

\(\text{PMT}\)

\(S1\)

\(S2\)

\(\text{photon detection}\)

\(\text{Poisson}\)

\(\text{Electron extraction}\)

\(\text{Binomial}\)

Recombination fluctuation
Binomial
\(\Delta r_{\text{stat}} + \Delta r_{\text{sys}}\)
Discrimination measurement

No observation of discrimination level increasing as field!
Discrimination measurement

- 8 < S1 < 12
- 12 < S1 < 16
- 16 < S1 < 20
- 20 < S1 < 24
- 24 < S1 < 28
- 28 < S1 < 32
\[\frac{\partial N_+}{\partial t} = -\mu_+ E \cdot \nabla N_+ + d_+ \nabla^2 N_+ - \alpha N_+ N_- \]

Drift

\[\frac{\partial N_-}{\partial t} = \mu_- E \cdot \nabla N_- + d_- \nabla^2 N_- - \alpha N_+ N_- \]

Diffuse

Recombine

Diffusion Eq

Birk-Doke Law:

\[r = \frac{A \cdot (dE / dx)}{1 + B \cdot (dE / dx)} + C \]

A&B proportional to \(\alpha \)

\[\Delta r = \left[(r - C) - \frac{(r - C)^2}{1 - C} \right] \cdot \frac{\Delta \alpha}{\alpha} \]

\[\frac{\Delta Q}{Q} = \left[\frac{r - C}{1 - r} - \frac{(r - C)^2}{(1 - C)(1 - r)} \right] \cdot \frac{\Delta \alpha}{\alpha} \]

IONS

Electrons

Best fit: \(\Delta \alpha/\alpha = (24.2 \pm 0.6)\% \)
Low energy $\Delta \alpha$

\[r(\xi) = 1 - \frac{1}{\xi} \ln (1 + \xi), \quad \xi \equiv \frac{N_i \alpha}{4 \alpha^2 \mu E} \]

\[
\Delta r = \left[\frac{1}{\xi} \ln(1 + \xi) - \frac{1}{1 + \xi} \right] \frac{\Delta \alpha}{\alpha}.
\]

$\Delta r/r = 4\%$

$\Delta r/r = 30\%$
Low energy $\Delta \alpha$

\[E_c = \left(\frac{S1}{PDE} + \frac{S2}{EAF} \right) \cdot W_q \]

Solid lines:

\[\Delta r = \left[\frac{1}{\xi} \ln(1 + \xi) - \frac{1}{1 + \xi} \right] \frac{\Delta \alpha}{\alpha} \]
Expected Leakage fraction with the model

If assume a log linear $\Delta \alpha/\alpha$ on field.

PDE=15.6%

There's no field dependence of the rejection.
Expected Leakage fraction with the model

PDE=10%

\[\frac{\bar{\mu}_{cr} - \mu_{cr}}{\sigma_{cr}} \]

Field [V/cm]

PDE=20%

\[\frac{\bar{\mu}_{cr} - \mu_{cr}}{\sigma_{cr}} \]

Field [V/cm]

PDE=50%

\[\frac{\bar{\mu}_{cr} - \mu_{cr}}{\sigma_{cr}} \]

Field [V/cm]

PDE=100%

\[\frac{\bar{\mu}_{cr} - \mu_{cr}}{\sigma_{cr}} \]

Field [V/cm]
Summary

1. Response of low energy NR and ER in LXe at different fields (236V/cm - 3.93kV/cm) were measured. NR data are consistent with NEST, while ER showed a deviation of photon yield by 5ph/keVee from NEST (Q. Lin et al., Phys. Rev. D 92, 032005, 2015).

2. An average ER rejection around 99.99% (with 50% NR acceptance) was achieved at different fields.

3. Preliminary study shows the ER rejection doesn't depend significantly on the field, while Δα/α follows a log-linear dependence with field in our measurement.
Thank you!
Float also N_{ex}/N_i

$N_{ex}/N_i = 0.11 \pm 0.07$
Compare to existing measurements

Need more measurements of low energy ER to confirm
energy spectrum dependence of signal response
3-D simulation result (with liquid level 2mm below gate mesh)