Calibration and Modeling of Nuclear and Electron Recoils in Liquid Argon

Workshop on Calibration of Low Energy Particle Detectors

Samuele Sangiorgio
Rare Event Detection Group, LLNL

Chicago, Sep 24, 2015
LLNL’s Noble Liquid R&D Program

Physics Motivations

- Dark Matter
- Coherent Elastic Neutrino-Nucleus Scattering

Liquid Xenon and Argon Detectors

- Two small dual-phase detectors
- Measure electron and nuclear recoils < few keV
- Understand and control low-energy backgrounds
- HV stability in noble liquids

Dedicate low-energy neutron beam

- On-site at LLNL
- Quasi-monoenergetic filtered neutron beam
LLNL Dual-Phase LAr Detector

- Active volume: ~ 100 g Lar
- TPB as wavelength shifter
- Home-built HV feed-throughs
- Very good LAr purity

![Diagram of LLNL Dual-Phase LAr Detector]

- 4x Hamamatsu R8520 1” PMTs
- Liquid Ar level
- Gas Ar (1 atm @ 87K)
- Up to 11kV/cm
- Up to 3kV/cm
- E_{gain}
- E_{drift}
- Field rings
- Rings support
- HV feed-throughs
High Gain Detection of Ionization Signal

- Interest in the lowest energy possible
- Emphasis on detection of ionization by means of S_2 only
- Operate close to electron multiplication in gas

![Graph showing relative amplitude vs. E/p (V cm$^{-1}$ torr$^{-1}$). The graph includes a line and points indicating a linear relationship. There is a note indicating ~11 kV/cm at 1 atm at 87K. The graph also shows ~10 kV/cm and ~2-4 kV/cm.]
Ar-37 as a Diffuse Low-E Calibration Source

Decay scheme
100% electron capture

\[t_{1/2} = 35.04 \text{ d} \]

Decay radiation
K- capture \(2.82\text{ keV}\) (90.2%)
L- capture \(0.27\text{ keV}\) (8.9%)
M- capture 0.02 keV (0.9%)

Isotope production
Produced by neutron irradiation of \(^{\text{nat}}\text{Ar}\) at a nuclear reactor

natAr isotopes

<table>
<thead>
<tr>
<th>Mass number</th>
<th>Natural Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>99.6%</td>
</tr>
<tr>
<td>36</td>
<td>0.34%</td>
</tr>
<tr>
<td>38</td>
<td>0.06%</td>
</tr>
</tbody>
</table>

Fig. 1. Calculated activity of radioargon isotopes from 1 h, in-core neutron irradiation of 1 cm\(^3\) of natural argon gas.

Sub-keV Calibration for Electron Recoils

S. Sangiorgio et al, NIM A 728 (2013)

- 37Ar K-shell EC
 - 2.82 keV

- 37Ar L-shell EC
 - 0.27 keV

- 55Fe Mn $K\alpha_1$ $K\alpha_2$
 - 5.90 keV

- 55Fe Mn $K\beta_1$ $K\beta_3$
 - 6.49 keV

Counts vs. S2 Collected Light [p.e.]
Single Electrons

• Experimental spectrum of single and double ionization electrons

• Provides absolute calibration of the number of detected electrons

• Typical S.E. event as seen on the scope

\[\begin{align*}
\text{Integral [p.e.]} & \quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \\
\text{Counts} & \quad 0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \\
\text{Time [\(\mu s\)]} & \quad 25 \quad 30 \quad 35 \quad 40 \quad 45 \\
\end{align*} \]

\[\begin{align*}
\text{Amplitude [mV]} & \quad 0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \\
\end{align*} \]

\[\begin{align*}
\mu & = 8.2 \pm 0.1 \text{ p.e.} \\
\sigma & = 3.4 \pm 0.1 \text{ p.e.}
\end{align*} \]
37Ar Electron Recoils vs Electric Field

- Electric field reduces recombination of electron with ions
- Measurements of the 0.27 keV peak vs E field are ongoing
 - Need to deal with low-energy background

2.82 keV – electron recoil
Recombination in LAr

Consider electron recoils first

\[S2 \propto n_e = r N_i \]

\[N_i + N_{ex} = \frac{E}{W} \cdot q(E) \]

Thomas-Imel parameterization of recombination

\[r = \ln(1 + \xi)/\xi \]

Introduce phenomenological scaling for field dependence:

\[\xi = CN_i \cdot \mathcal{E}^{-b} \]

Extract field dependence parameter C, b from fit

For electron recoils the amount of initial ionization \(N_i \) is calculable:

- \(N_{ex} / N_i = 0.21 \)
- \(E = 2.82 \text{ keV for } 37\text{Ar K-shell} \)
- \(W = 19.5 \text{ eV} \)
- \(q(E) = 1 \)

At low energy, empirical Thomas-Imlel box model seems successful but
- Empirical field dependence
- All electron-ion pairs recombine for zero electric field
- Little insight on physical processes involved

Simulation Approach

1. Initial interaction
 - Simulate initial emission of photoelectrons and/or auger electrons

2. Follow electrons using electron transport algorithm
 - based on prior work by Wojcik et al for thermal electrons
 - Solves equation of motion for electrons under external fields and ions field
 - Positions and velocity of electrons are forward propagated

3. Compute interactions as electrons slow down
 - electrons-induced excitation, ionization and elastic scattering
 - secondary electron generated and followed as well
 - Thermal model validated against measurements (drift velocity, escape probability,...)

4. Recombination criteria:
 - Electron energy < 1 eV
 - Electron-ion distance < 1.3 nm

No tunable parameter!

Modeling 37Ar Decays

Average ionization track length \ll electron thermalization length (2.6 μm)

Compare with 0.21 from Doke from 217Bi conversion electrons

Model limitations:
- Ionization cross-section uses binding energies of gas
Neutron-induced Nuclear Recoils in LAr

- Elastic neutron scattering

- Two complementary approaches:

SCENE
SCintillation (and ionization)
Efficiency Noble Elements
- Recoils from tagged neutron scatter
- Energy 11 – 57 keV → DarkMatter
- Scintillation & Ionization

NARRLI
Neutron Argon Recoils Resulting in Liquid Ionization
- End-point measurement
- Low energy < 10 keV → CENNS
- Ionization signal only
Creating a low-E neutron beam

\[^7\text{Li}(p,n)^7\text{Be} \]

Near-threshold kinematics of \(^7\text{Li}(p,n)\) allow control of maximum neutron energy

Proton Energy Countours for a Thick Lithium Target from Lee and Zhou NIMB 152 (1999)

Requirements:
- Continuous p beam
- No ToF in detector (no S1)
The Li target

Ep = 1.93 MeV

Li metal target Li$_2$O target LiF target Li$_2$CO$_3$ target

Same total Li content

Differential yield (109 neutrons/250 eV/Sr/mC)

Differential yield at 45° (109 neutrons/250 eV/Sr/mC)

Lab Frame Neutron Emission Angle (degrees)

Lab Frame Neutron Energy (keV)

Lab Frame Neutron Energy (keV)
Neutron Filtering

- Take advantage of nuclear physics to selectively transmit neutrons through interference dips in scattering x-sections

^{40}Ar, ^{56}Fe, and ^{48}Ti (n,el) cross-sections

<table>
<thead>
<tr>
<th>Incident Energy (keV)</th>
<th>Cross Section (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>40</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>60</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>80</td>
<td>10^2</td>
</tr>
<tr>
<td>100</td>
<td>10^2</td>
</tr>
</tbody>
</table>

- ^{40}Ar
- ^{56}Fe
- ^{48}Ti
Creating a low-E neutron beam

Backgrounds:
- gammas from $^7\text{Li}(p,p')$
- neutron-capture gammas in shield
- 24 keV neutrons through the filter

Measure at different collimation angle, normalize and subtract
Expected Recoil Spectrum in LAr

MCNP calculation of neutron transport and interaction using detailed geometry

![Graph showing expected recoil spectrum in LAr]

- All scatters in active volume (x0.5) - 45 deg
- Single scatters fiducial volume - 45 deg
- Single scatters fiducial volume - 55 deg
- Background subtracted signal - model input

Endpoint measurement at 6.7 keV nuclear recoils

\[T_{Ar}^{\text{MAX}} = \frac{4mM}{(m + M)^2} E_n \]
LLNL’s on-site dedicated neutron beam

1.7 MeV Tandem accelerator at LLNL’s CAMS

The collimator setup

Unique neutron facility for detector calibration to low-energy neutrons (< 150 keV)

7mm dia Li1µm thick

Proton beam

Beam on target
Ionization Yield at 6.7 keVr

Fit using the MCNP spectrum convolved with measured detector resolution and three free parameters:

- fixed ionization yield,
- rate normalization,
- fano factor

\[Q_y = 4.9^{+0.1}_{-0.2} \text{ (stat)}^{+0.7}_{-0.9} \text{ (syst)} \, e^{-}/\text{keV} \]

at 640V/cm
Uncertainty Estimation

<table>
<thead>
<tr>
<th>Component</th>
<th>Statistical (%)</th>
<th>Systematic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single electron peak</td>
<td>2–10</td>
<td>10</td>
</tr>
<tr>
<td>Single electron calibration</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>χ^2 analysis</td>
<td>3–5</td>
<td>…</td>
</tr>
<tr>
<td>Input spectrum</td>
<td>…</td>
<td>5</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>…</td>
<td>1–3</td>
</tr>
<tr>
<td>Slope of Q_y in model 240 V/cm</td>
<td>…</td>
<td>+5</td>
</tr>
<tr>
<td>“ 640 V/cm</td>
<td>…</td>
<td>−25</td>
</tr>
<tr>
<td>“ 1600 V/cm</td>
<td>…</td>
<td>+2</td>
</tr>
<tr>
<td>“ 2130 V/cm</td>
<td>…</td>
<td>−18</td>
</tr>
<tr>
<td>Liquid argon purity</td>
<td>…</td>
<td>5</td>
</tr>
<tr>
<td>Drift field (\mathcal{E})</td>
<td>…</td>
<td>6</td>
</tr>
</tbody>
</table>
Nuclear recoils at 6.7 keVr at varying electric field

Electric Field Dependence of Ionization Yield

Field Dependence

For nuclear recoils

\[S^2 \propto n_e = rN_i \]

\[N_i + N_{ex} = \frac{E}{W} \cdot q(E) \]

Use modified Thomas-Imel to account for recombination using parameters obtained from 2.82 keV electron recoils

Fit with \(N_i \) as only free parameter

For nuclear recoils the amount of initial ionization \(N_i \) is unknown:

- \(N_{ex} / N_i = ?? \)
- \(E = 6.7 \text{ keV} \)
- \(W = 19.5 \text{ eV} \)
- \(q(E) = ?? \)

Same phenomenological model of recombination holds in both cases

\[\downarrow \]

Similarities in spatial distributions of ions and electrons
Comparison with SCENE Measurements

- Different energies and electric field range. Very complementary but hard to cross-check directly

- Agreement on recombination: same fit result for the electric field parameter ‘b’ in the modified Thomas-Imel (b = 0.61)

- Combined ionization yield data:

![Graph showing ionization yield vs. electric field for different energies.](image-url)

At 240 V/cm field:
Modeling Low-E Nuclear Recoils in Liquid Argon

TRIM-based binary collision Monte Carlo Model

- Elastic Coulomb collisions
- Inelastic collisions producing excitation and ionization

Notes:

- Ionization energy spectrum is not well known and depends on collision energy → use 3 and 10 eV
- Three-body collisions are neglected
- Bi-excitonic quenching mechanism not included

Modeling Results

Track Length

Ionization Yield at 1 kV/cm

Ionization Yield vs E Field
Conclusions and outlook

- Demonstrated use of 37Ar to calibrate down to sub-keV energies
- Measured the ionization yield at 6.7 keVr in liquid argon as a function of electric field
- Developed atomic collision simulation for low-energy (< 10 keV) interactions in liquid argon
 - Appreciably good agreement
 - Would be interesting to extend it to xenon
- Nuclear recoil measurements:
 - Refurbishment of Li target for higher neutron efficiency
 - Access lower recoil energy using different filters
 - Xe target

<table>
<thead>
<tr>
<th>Neutron energy (keV)</th>
<th>Xe</th>
<th>Ar</th>
<th>Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.5</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>24</td>
<td>0.7</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>47</td>
<td>1.4</td>
<td>4.5</td>
<td>2.5</td>
</tr>
<tr>
<td>59</td>
<td>1.8</td>
<td>5.7</td>
<td>3.2</td>
</tr>
<tr>
<td>70</td>
<td>2.1</td>
<td>6.7</td>
<td>3.8</td>
</tr>
<tr>
<td>82</td>
<td>2.5</td>
<td>7.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

- Things to consider:
 - Liquid Argon vs Liquid Xenon
 - Few-electrons backgrounds
 - Single electron calibration
Acknowledgements

- A. Bernstein, C. Hagmann, K. Kazkaz, V. Mozin, S. Pereverzev, F. Rebassoo, S. Sangiorgio
- T. Joshi
- P. Sorensen
- I. Jovanovic
- M. Foxe