Non-trivial vacua

KICP - University of Chicago

Claudia de Rham

think beyond the possible"

Σ-model

$$\mathcal{L} = -\frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b} f_{ab}(\phi)$$

d-dim spacetime *D* fields ϕ^a

• If sign $(f_{ab}) = (+ + \cdots +)$ well-defined

(usually associated with compact space)

• If $sign(f_{ab}) = (-+\cdots+)$ NOT well-defined (usually associated with non-compact space)

mode associated with the negative direction is a *ghost*

Σ-model (for non-compact groups) $\eta_{\mu\nu} \rightarrow g_{\mu\nu}(x)$

$$\mathcal{L}_{\text{Polyakov}} = -\frac{1}{2} \sqrt{-g(x)} g^{\mu\nu}(x) \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b} f_{ab}(\phi)$$

Diff invariance \longrightarrow would-be ghost is gauge mode

In *2d* integrating out $g_{\mu\nu}$ leads to the Nambu-Goto action $\mathcal{L}_{\text{Nambu-Goto}} = -\frac{1}{2}\sqrt{-\det(\partial_{\mu}\phi^{a}\partial_{\nu}\phi^{b}f_{ab}(\phi))}$

Nambu-Goto action

 $\mathcal{L}_{\rm NG} = \det K = \mathcal{E}\mathcal{E}K^{d}$

If K is diagonalizable

with
$$K^{\mu}_{\ \nu} = \sqrt{\eta^{\mu\alpha}\partial_{\alpha}\phi^a\partial_{\nu}\phi^b f_{ab}(\phi)}$$

$$\det\left(\frac{\delta^2 \mathcal{L}_{\rm NG}}{\delta \dot{\phi}^a \delta \dot{\phi}^b}\right) = 0 \quad \longrightarrow \text{ would-be ghost is absent}$$

Generalization...

$$\mathcal{L}_{\mathrm{NG}} = \mathcal{E}\mathcal{E}K^d \longrightarrow \mathcal{L}_n = \mathcal{E}\mathcal{E}K^n$$

with
$$K^{\mu}_{\
u} = \sqrt{\eta^{\mu lpha} \partial_{lpha} \phi^a \partial_{
u} \phi^b f_{ab}(\phi)}$$

$$\det\left(\frac{\delta^2 \mathcal{L}_n}{\delta \dot{\phi}^a \delta \dot{\phi}^b}\right) = 0 \quad \longrightarrow \text{ would-be ghost is also}$$

Generalization...

$$\mathcal{L}_{\mathrm{NG}} = \mathcal{E}\mathcal{E}K^d \longrightarrow \mathcal{L}_n = \mathcal{E}\mathcal{E}K^n$$

The difference between \mathcal{L}_n and the NG action is that for $n \neq 0$, d the constraint is not associated with a symmetry

for n = d there are (D - d) dynamical dof

for $n \neq 0$, d there are (D - 1) dynamical dof (if $D \ge d$)

Field space: *D*-dim Spacetime: *d*-dim

 $D \ge d > 2$

 $K^{\mu}_{\ \nu} = \sqrt{\eta^{\mu\alpha}\partial_{\alpha}\phi^a\partial_{\nu}\phi^b\eta_{ab}}$

Perturbative dofs

• Focus on \mathcal{L}_2 in d = D = 4 dimensions with $f_{ab} = \eta_{ab}$

$$\mathcal{L}_2 = -\frac{1}{8} \left(\operatorname{Tr} \left(K^2 \right) - \left(\operatorname{Tr} K \right)^2 \right)$$

This theory has D - 1 = 3 dofs

 $K^{\mu}_{\ \nu} = \sqrt{\eta^{\mu\alpha}\partial_{\alpha}\phi^a\partial_{\nu}\phi^b\eta_{ab}}$

Perturbative dofs

• Focus on \mathcal{L}_2 in d = D = 4 dimensions with $f_{ab} = \eta_{ab}$

$$\mathcal{L}_2 = -\frac{1}{8} \left(\operatorname{Tr} \left(K^2 \right) - \left(\operatorname{Tr} K \right)^2 \right)$$

This theory has D - 1 = 3 dofs

• 1 dof is lost on the trivial background $\phi^a = x^{\mu} \delta^a_{\mu}$

 $K^{\mu}_{\nu} = \sqrt{\eta^{\mu\alpha}\partial_{\alpha}\phi^a\partial_{\nu}\phi^b\eta_{ab}}$

Perturbative dofs

• Focus on \mathcal{L}_2 in d = D = 4 dimensions with $f_{ab} = \eta_{ab}$

$$\mathcal{L}_2 = -\frac{1}{8} \left(\operatorname{Tr} \left(K^2 \right) - \left(\operatorname{Tr} K \right)^2 \right)$$

This theory has D - 1 = 3 dofs

• 1 dof is lost on the trivial background $\phi^a = x^{\mu} \delta^a_{\mu} + A^a(x)$ $\mathcal{L}_2 = -\frac{1}{4} F_{ab}^2 + \mathcal{O} (\partial A)^3 \qquad F_{ab} = \partial_a A_b - \partial_b A_a$

U(1)-symmetry \longrightarrow only 2 propagating dofs...

Consequences for Gravity $\mathcal{L} = \frac{M_{\rm Pl}^2}{2} \sqrt{-g} \left(R[g] - \frac{1}{4} m^2 \left(\operatorname{Tr} \left(K^2 \right) - \left(\operatorname{Tr} K \right)^2 \right) \right)$

On the trivial background: $\phi^a = x^a + A^a + \partial^a \chi$, $g_{\mu\nu} = \eta_{\mu\nu}$ χ is a gauge mode...

χ only becomes dynamical once interactions with the graviton are considered

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$

 $h^{\mu\nu}\left(\partial_{\mu}\partial_{\nu}\chi-\Box\chi\eta_{\mu\nu}\right)$

Consequences for Gravity $\mathcal{L} = \frac{M_{\rm Pl}^2}{2} \sqrt{-g} \left(R[g] - \frac{1}{4} m^2 \left(\operatorname{Tr} \left(K^2 \right) - (\operatorname{Tr} K)^2 \right) \right)$

On the trivial background: $\phi^a = x^a + A^a + \partial^a \chi$, $g_{\mu\nu} = \eta_{\mu\nu}$ χ is a gauge mode...

 χ only becomes dynamical once interactions with the graviton are considered

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

 $h^{\mu\nu}\left(\partial_{\mu}\partial_{\nu}\chi-\Box\chi\eta_{\mu\nu}\right)$

At the origin of vDVZ Need for Vainshtein, Strong coupling no exact FRWL solutions, SL (?)

Consequences for Gravity

On 1 χ χ only once gravi

 h^{μ}

n of shtein, oling olutions,

 ν

MG on AdS

$$\mathcal{L} = \frac{M_{\rm Pl}^2}{2} \sqrt{-g} \left(R[g] - \frac{1}{4} m^2 \left(\operatorname{Tr} \left(K^2 \right) - (\operatorname{Tr} K)^2 \right) \right)$$

On the AdS background: $\phi^a = x^a + A^a + \partial^a \chi$
 $g_{\mu\nu} = \gamma^{(\mathrm{AdS})}_{\mu\nu} + h_{\mu\nu}$
Helicity-o mode is dynamical on that background
$$\mathcal{L}_{\chi} = -\frac{1}{2} \left(\frac{M_{\rm Pl}^2 m^2}{L^2} + M_{\rm Pl}^2 m^4 \right) (\partial \chi)^2 + m^2 \chi T$$

MG on AdS

$$\mathcal{L} = \frac{M_{\rm Pl}^2}{2} \sqrt{-g} \left(R[g] - \frac{1}{4} m^2 \left(\operatorname{Tr} \left(K^2 \right) - \left(\operatorname{Tr} K \right)^2 \right) \right)$$
$$L^{-1} \ll m \quad \Rightarrow \quad \hat{\chi} = M_{\rm Pl} m^2 \chi \qquad \qquad L^{-1} \gg m \quad \Rightarrow \quad \hat{\chi} = \frac{M_{\rm Pl} m}{L} \chi$$
$$\mathcal{L}_{\chi} = -\frac{1}{2} (\partial \hat{\chi})^2 + \frac{1}{M_{\rm Pl}} \chi T \qquad \qquad \mathcal{L}_{\chi} = -\frac{1}{2} (\partial \hat{\chi})^2 + \frac{\widehat{mL}}{M_{\rm Pl}} \chi T$$

Strong coupling scale:

$$\Lambda_3 = \left(M_{\rm Pl}m^2\right)^{1/3}$$

Strong coupling scale:

$$\Lambda_* = \left(\frac{M_{\rm Pl}m}{L}\right)^{1/3} \gg \Lambda_3$$

AdS curvature makes it much better defined...

MG on AdS

• Strong coupling scale can be pushed higher

• There may be a local, causal, unitary UV completion of a single massive graviton

Porrati, 2001

• AdS/CMT may be one of massive gravity raison d'être

Copping with Minkowski...

• Can we mimic the effect of AdS while remaining on Minkowski ?

Work in progress with Shuang-Yong Zhou and Andrew Tolley

 $K^{\mu}_{\nu} = \delta^{\mu}_{\nu} - \sqrt{\eta^{\mu\alpha}} \partial_{\alpha} \phi^a \partial_{\nu} \phi^b \eta_{ab}$

Copping with Minkowski...

• Can we mimic the effect of AdS while remaining on Minkowski ?

Switch gravity off

$$\mathcal{L} = \frac{M_{\rm Pl}^2}{2} \sqrt{-g} \left(R[g] - \frac{1}{4} m^2 \left(\operatorname{Tr} \left(K^2 \right) - (\operatorname{Tr} K)^2 \right) \right)$$

 $\phi^a = x^a + A^a + \partial^a \chi \,, \quad g_{\mu\nu} = \eta_{\mu\nu}$

 $K^{\mu}_{\nu} = \delta^{\mu}_{\nu} - \sqrt{\eta^{\mu\alpha}} \partial_{\alpha} \phi^a \partial_{\nu} \phi^b \eta_{ab}$

Copping with Minkowski...

• Can we mimic the effect of AdS while remaining on Minkowski ?

Switch gravity off

 $\mathcal{L} = \frac{M_{\rm Pl}^2}{2} \sqrt{-g} \left(R[g] - \frac{1}{4} m^2 \left(\operatorname{Tr} \left(K^2 \right) - (\operatorname{Tr} K)^2 \right) \right)$

 $\phi^a = x^a + A^a + \partial^a \chi \,, \quad g_{\mu\nu} = \eta_{\mu\nu}$

Consider other vacuum solution

 $K^{\mu}_{\nu} = \delta^{\mu}_{\nu} - \sqrt{\eta^{\mu\alpha}} \partial_{\alpha} \phi^a \partial_{\nu} \phi^b \eta_{ab}$

Non-trivial vacuum $\mathcal{L} = -\frac{1}{8} \left(\operatorname{Tr} \left(K^2 \right) - (\operatorname{Tr} K)^2 \right)$

eg. Plane waves are exact vacuum solutions

$$\bar{\phi}^a = x^a + F(t-x)\delta^a_y$$

DOFs about that background

$$\phi^a = \bar{\phi}^a {+} V^a$$

 $\mathcal{L} = -M^{\mu\nu}_{ab}(F) \partial_{\mu}V^{a}\partial_{\nu}V^{b} + \mathcal{O}(\partial V)^{3}$ Breaks the U(1) symmetry $\longrightarrow 3$ dof

Consistent vacuum

We can easily find local vacua

$$\bar{\phi}^a = \bar{M}^a_{\ b} x^b + \frac{1}{L} \bar{P}^a_{bc} x^b x^c + \cdots$$

On which there are 3 dofs and Hamiltonian is positive definite

Could be a consistent Σ -model on Minkowski Without the need for gravity

With a strong coupling scale Λ , $\Lambda_3 \ll \Lambda \ll L^{-1}$

Consequences for MG

 $\mathcal{L}_{\mathrm{MG}} = \mathcal{L}_{\mathrm{GR}} - m^2 M_{\mathrm{Pl}}^2 \left(\mathrm{Tr} \left(K^2 \right) - (\mathrm{Tr} K)^2 \right) + \mathcal{L}_{\mathrm{matter}}(g_{\mu\nu}, \psi)$ $\bar{\phi}^a = \bar{M}^a_{\ b} x^b + \frac{1}{L} \bar{P}^a_{bc} x^b x^c + \cdots$

By working about a non-trivial vacuum, we can easily take a Λ₂ decoupling limit of MG

Consequences for MG

$$\mathcal{L}_{\mathrm{MG}} \rightarrow h \partial^2 h + \frac{1}{M_{\mathrm{Pl}}} h T + \Lambda_2^4 \mathcal{L}(\eta_{\mu\nu}, V^a)$$

Partially Massless

Massive Gravity on de Sitter

 $\mathcal{L}_{\chi} = -\frac{M_{\rm Pl}^2 m^2}{2} \left(m^2 - 2H^2\right) (\partial \chi)^2$

• Helicity-o mode is non-dynamical if $m^2 = 2H^2$ (Higuchi bound 1986)

open the door for a potential PM gravity (MG with additional symmetry with no helicity-o mode)

But in MG it was shown that the symmetry does not remain at higher order and the helicity-o mode reappears making the dS background infinitely strongly coupled

Partially Massless

Massive Gravity on de Sitter

$$\mathcal{L}_{\chi} = -\frac{M_{\rm Pl}^2 m^2}{2} \left(m^2 - 2H^2\right) (\partial \chi)^2$$

• Helicity-o mode is non-dynamical if $m^2 = 2H^2$ (Higuchi bound 1986)

open the door for a potential PM gravity (MG with additional symmetry with no helicity-o mode)

But in MG it was shown that the symmetry does not remain at higher order and the helicity-o mode reappears making the dS background infinitely strongly coupled

Could the conclusions be different in Bi-Gravity ???

PM bi-Gravity

 $\mathcal{L}_{\mathrm{BiG-PM}} = \mathcal{L}_{\mathrm{GR}}(g) + \mathcal{L}_{\mathrm{GR}}(f) + m^2 M_{\mathrm{Pl}}^2 \mathcal{L}_K(\phi^a)$

The helicity-o mode acquires a kinetic term in non-trivial backgrounds

$$\bar{\phi}^a = \bar{M}^a_{\ b} x^b + \frac{1}{L} \bar{P}^a_{bc} x^b x^c + \cdots$$

$$\mathcal{L}_{\text{BiG-PM}} = \mathcal{L}_{\text{GR}}(g) + \mathcal{L}_{\text{GR}}(f) + \mathcal{L}_{F}(V^{i}) + \mathcal{O}(m^{2})$$

$$\underbrace{\mathcal{L}_{\text{BiG-PM}}}_{\text{2dof}} = \underbrace{\mathcal{L}_{\text{GR}}(g)}_{\text{2dof}} + \underbrace{\mathcal{L}_{F}(V^{i})}_{\text{3dof}} + \underbrace{\mathcal{O}(m^{2})}_{\text{3dof}}$$

The theory has 7 dofs on that vacuum. It cannot be enjoying a symmetry (ie just like there is no non-linear PM gravity, there is no non-linear PM bi-gravity)

The End

- The potential of massive gravity can be thought of as a Σ-model for a non-compact group
- There are (local) non-trivial vacua for which all the dofs are healthy and stable
- On these vacua MG can have a much higher strong coupling scale that previously anticipated and no fifth force in the decoupling limit
- This also means that there cannot be a PM theory of neither gravity nor bi-Gravity or multi-Gravity.