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Higher curvature gravity and effective field theory

Einstein gravity is non-renormalizable = incomplete or strongly coupled at high energies

We generally interpret it as a low energy effective field theory

Higher derivative terms suppressed by coefficients sensitive to details of new physics

mass scale of new physics

Observables are to be calculated perturbatively, order by order in powers of: ME’ b
P m

We do not worry about ghosts/superluminality /cauchy breakdown etc.
associated with the higher derivative terms: these are non-perturbative

in E/m



Higher curvature gravity and effective field theory

Nevertheless, there is a long and fine tradition of ignoring the
perturbativity requirement and asking what higher curvature terms

have to say non-perturbatively e.g. Stelle (1976 — present)

Motivations:
e gain intuition about the gravitational effects higher-scale physics might produce
o display various pathologies that a UV completion must ultimately overcome

o try to find a UV complete theory of gravity
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Quadratic Curvature gravity

Most general action up to fourth order in derivatives:

1
2 Voo
12m2R * AM? s 7

1
S:M}%/C#ZU vV — 3 [2R+

Renormalizable, UV complete theory of quantum gravity  stlle 1976

(~ e« massless graviton <«

one of these is always ghostly

Degrees of freedom : .
e Imassive graviton

around Minkowski:

\_ * massive scalar
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Quadratic Curvature gravity as massive gravity

The spectrum contains a massive spin-2 = it is a theory of massive gravity

Massive gravity is usually not renormalizable: generic strong coupling at A; ~ (MpM*)'/?

At best, it is: Ay ~ (MpM?)Y/? (as in dRGT theory and HR bi-metric theory)

Longitudinal modes of massive graviton described by a non-

renormalizable galileon lagrangian:

—3(00)" + =1 (00)'05 — 4 T (96)* ([11] — [11?])

_40<603 - }\)§<8d5 + c3) (8&)2 ([ﬂ]3 _ 3[ﬂ2][ﬂ] + 2[ﬂ3]) + scalar-tensor mixing
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Quadratic Curvature gravity as massive gravity

Quadratic gravity, being renormalizable, should have no strong coupling scale

How does its massive graviton evade the ubiquitous A strong coupling?

We will use the Stiickelberg trick to easily see how

. . Claudia de Rham, Gregory Gabadadze, David Pirtskhalava, Andrew Tolley, Itay Yavin
We use teChquueS deVelOped M.  “Nonlinear Dynamics of 3D Massive Gravity”

arXiv:1103.1351



Re-write as a second-order theory

Quadratic gravity is a 4-th order theory:
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Any non-degenerate higher order theory can be written in second order form using auxiliary
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Re-write as a second-order theory

Quadratic gravity is a 4-th order theory:

1 1 .
M / o V=g [§R+ 12m2R2 gz e O

Any non-degenerate higher order theory can be written in second order form using auxiliary

variables.

First eliminate f(R) part by introducing a scalar: ¢ = R

1 é 1 1
2 4 /. 2 vpo
MP/d ) [2 (1 " 3m2) R 15m? T G ]

Go to Einstein frame: ¢ = 3m? (61/) — 1) Guv — e_wg/u/
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Re-write as a second-order theory

Quadratic gravity is a 4-th order theory:

1 1 1 .
M / o V=g [§R+ o1t + e G O

Any non-degenerate higher order theory can be written in second order form using auxiliary

variables.

First eliminate f(R) part by introducing a scalar: ¢ = R

1 & 1 1
2 4 /| = o 2 L po
Go to Einstein frame: ¢ = 3m? (61/) — 1) Juv — e_wg/u/

1 3 3 _ 2 1 oo
M]%/d% V—g liR — Z((‘?@Df — 1m2e e —1) + Ve Cvpe CHP ]

Next eliminate Weyl part by introducing a tensor: fuw = 77 (R — s Rgw)

M [t v [§R 3007~ G (08~ 1)" 4 G = 8 (Gt — 1)



Linear spectrum

Easiest way to see the spectrum: expand in linear fluctuations about flat space and

diagonalize:

9uv — Nuv =+ h/u/
h/vW =2 (h/pw + f#”)

Action to second order in fluctuations: A/, f.., v

Mp [ e =5 (@0 = m2) 4+ W () = S (ED),, ~ 3 (™~ )



Linear spectrum

Easiest way to see the spectrum: expand in linear fluctuations about flat space and

diagonalize:

9uv — Nuv =+ h/u/
h/vW =2 (h/pw + f#”)

Action to second order in fluctuations: A/, f.., v

3 1 uv / ]‘ v ]‘ 1%
Mp [ e =5 (@0 = m2) 4+ W () = S (ED),, ~ 3 (™~ )
N J o\ )
massive scalar field v, with mass squared m? T
massless spin-2 field A,

massive (ghost) spin-2 field f,.,, with mass squared M?
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~
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Stiickelberg-ing

Quadratic curvature gravity is already diff invariant: no obvious broken
gauge symmetry for Stickelberg fields to restore

Really a bi-metric theory = introduce Stiickelbergs to restore a second diff invariance

~

fluy — f/ﬂ/ _|_ v,uv,/ _|_ vl/‘?,u,) VN — V//L —|_ a,u,ﬂ'

. 1 , 1 , 1
MJZD) 2/de \/—gliR—l—]w G#V—§M2 (fw/f“ _f2) _§M2Fiy

+2M2R,, VIVY — 2M? f (V,J/V — GV - f/) ] :

second diff invariance: odf,, =V, A, +V, A, 0V, =—-A, +0,A, dm=A

Full non-linear DOF count (D=4):

(25 fields) — 2 x (9 gauge symmetries) = (7 degrees of freedom)
fur 10 ¢y massless graviton =~ 2
y A, 4
G 10 massive graviton 5
v, 4 _ Al
\_ T 1

No Boulware-Deser ghost associated with the massive graviton = expect a Aj strong coupling scale
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Decoupling limat

Canonically normalize:

1~ . 1 X 1 .
(huvv fuﬂ/) ~

D_4 (h,uzn f,uz/)a V,u ~ D—_lvw T D m
2

M Mz 'M Mz M2

First non-trivial Non-renormalizable operator appears at A3 . Decoupling limit:

M —0, Mp— 00, Aps: fixed Apis = (M%MP)

D—

1 1 1
ME? / dPu [ S (ER),, = S (ER),, — SMPE}, —2M f* (9,0,7 — n,,On) +2M 2Rﬁy(h)8“7rc9”7r}
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, 2 1
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Decoupling limat

Canonically normalize:

1 A A 1 A 1
(hw/v fuﬂ/) ~

%_1 (h,uw f,uz/)a V,u ~ D—_lv,u) T~ D T

M Mz 'M Mz M2

First non-trivial Non-renormalizable operator appears at A3 . Decoupling limit:

M —0, Mp— 00, Apss fixed Apis = (MﬁMP)

2
D—-2

1 1 1
ME? / dPu [ S (ER),, = S (ER),, — SMPE}, —2M f* (9,0,7 — n,,On) +2M 2Rﬁy(h)8“7rc9”7r}

: : 4
Diagonalize: huw — 2 (R, + f1,) — 5 oM Ny T
2

o = fiuy = 55 MPm = 2M* | 0,0, — —(aw)zmwl

_ 1, ., 1, 1 2(D —1 2MA(D — 4
MP Z/dD:z: [ S (EN) = S (ES),, — 5 MPE, + ;Q)M‘l(aw)?[ D(_2 )(aw)%ﬁ

Becomes strongly coupled at dRGT scale when D#4.: t

only interaction is

o New Massive gravity non-renormalizable (D=3) a cubic galileon

o Quadratic curvature gravity non-renormalizable in D=5
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D=4 massless limit
Galileon term vanishes when D=4: we must look for scales higher than Aj

It turns out there are none.

Field re-definition removes all operators suppressed by scales < Mp

1 -~ 1 -
f,u,/ — f/;,/ + 59,1“/ —2M? [v,qu — igm/VQ]

No obstruction to taking a straight massless M — 0 limit:

1
M3 / d*x \/_—g[ — §M2F3V+3M4(87r)2

1
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D=4 massless limit
Galileon term vanishes when D=4: we must look for scales higher than Aj

It turns out there are none.

Field re-definition removes all operators suppressed by scales < Mp

1 -~ 1 -
f,u,/ — f/:,/ + 59,1“/ —2M? [v,qu — igm/VQ]

No obstruction to taking a straight massless M — 0 limit:

1
M3 / dix \/_—g[ — §M2F3V+3M4(87r)2

1
+of (G/ﬂ/ —2M?*(V, V7 — g,,0r) + 2M* (VMWVVW + 59;“/(8”)2)) ]

o2
Weyl transformation: ¢g,, — € M " G

1 :
M3 / d'z /=g [ " Gy — S MPE,, 4 3M e ”(87?)2]

If the theory is renormalizable, there should be no strong coupling at

all, even at Mp



D=4 massless limit

Expand in fluctuations and diagonalize:

N N N 1-
hw = Ppw + fuws 0fw = S — §huv

/
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D=4 massless limit

Expand in fluctuations and diagonalize:
. . _ 1-
h,ul/ — h,uy + f;u/p 5f;u/ — f,lU/ - §huu
Guv — Nuv + hpﬂ/) //“/ — %npu/ + 5f,uy

I T | ,
M3 / d' [ gh“” (5h)W — S (EF) = SMPEL 4 3M e (Or)?

jn%

+ (fw - %EW) V=9GP (bt fl 4+ £ED [h+ F V7] ]

Coupling is only through the combination h+f

graviton exchange cancels ghost exchange



D=4 massless limit

Field re-definition completely eliminates interactions:

I [ cosha sinha %,
Fow sinha cosh a L)
exploit so(1,1) invariance of ghostly kinetic terms

v

e N\
. . X . 1 :
M3 / d'z [ gh@ﬂ” (ER@) - g Fem (EF@) = SMEFZ, + 3M e M (0r)?
Nz 1% _

1. N - 3 5
T (f —5h) V=gGED e (B 4 FO) | 42D [en (B 4 F@) V] }
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D=4 massless limit

Field re-definition completely eliminates interactions:

I [ cosha sinha %,
Fow sinha cosh a i)
exploit so(1,1) invariance of ghostly kinetic terms

v
e ™~

. . X . 1 :
M3 / d'z [ %h@/ﬂ/ (ER@) - g Fem (EF@) = SMEFZ, + 3M e M (0r)?
N

[N

1. 5 _ - N N
+ (f —5h) V=gGED e (B 4 FO) | 42D [en (B 4 F@) V] }

uv

« — —o0 = Theory is trivial at high energies (renormalizable & asymptotically free)

. . 1 ,
3 _gf(a),ul/ (gf(a))uy_§M2Fiy+3M4€—2M 77(87_‘_)2

uv

M2 / dh R (£7)



D=4 massless limit

Bringing back the scalar:

M%/d% Ee”(@w)Q— Ze T(O)? — m o (¢+w)( 1)2]

We can field re-define to find an explicitly renormalizable interaction

m2

M3

Renormalizable ¢* -type potential with coupling \ ~



Conclusions

e Quadratic curvature gravity in the high-energy limit is greatly
simplified using the Stiickelberg trick

o Makes the renormalizability /asymptotic freedom of the theory

ecasy to see

e Shows how the massive graviton overcomes the As strong

coupling scale

e Shows the necessity of the ghost in making this possible






