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We do not worry about ghosts/superluminality/cauchy breakdown etc. 
associated with the higher derivative terms: these are non-perturbative 
in E/m 



Nevertheless, there is a long and fine tradition of ignoring the 
perturbativity requirement and asking what higher curvature terms 
have to say non-perturbatively 

Motivations: 

• gain intuition about the gravitational effects higher-scale physics might produce 

• display various pathologies that a UV completion must ultimately overcome 
  
• try to find a UV complete theory of gravity 

Higher curvature gravity and effective field theory

e.g. Stelle (1976 — present)



Quadratic Curvature gravity

Most general action up to fourth order in derivatives: 

The coe�cients of these higher derivative terms are determined by the high energy physics.

Without knowledge of this physics, they are free parameters to be determined by experiment,

and the higher derivative terms they come with are only to be used perturbatively to calculate

low-energy observables in an expansion in powers of the energy of the observable over the

energy scale of new physics [3, 4].

Nevertheless, it has long been of interest to ignore the requirement to treat such terms

perturbatively, and to ask what they have to say fully non-perturbatively. The motivation is

often to gain intuition about the e↵ects Planck physics might produce, or to display various

pathologies that a UV completion must ultimately overcome.

The leading higher derivative terms are those with four derivatives. In four dimensions,

of the four possible dimension 4 curvature invariants, R2, Rµ⌫R
µ⌫ , Rµ⌫⇢�R

µ⌫⇢�, ⇤R, two

of them, ⇤R and the Gauss-Bonnet combination Rµ⌫⇢�R
µ⌫⇢� � 4Rµ⌫R

µ⌫ + R2, are total

derivatives, leaving a two dimensional space of possibilities which we may parametrize in

terms of R2 and the square of the Weyl tensor,
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Here m2, M2 are the mass scales of new physics, and M2
P is the Planck mass scale.

This action has been studied regularly from the non-perturbative viewpoint since the

early work [5–10] (see e.g. the recent work [11–19]). In particular, around its Minkowski

solution the theory propagates, in addition to the massless graviton, a massive spin-2 degree

of freedom with mass squareM2 and a massive scalar degree of freedom with mass squarem2.

The theory has been argued to be renormalizable, essentially due to the improved ⇠ 1/k4

behavior of the propagator [5]. The traditional problem, obstructing its status as a complete

theory of quantum gravity, is a ghost instability; around the same flat background for which

the theory is renormalizable, the kinetic terms for the massless graviton and massive spin-2

have opposite signs, so one of them must always be ghostly.

Here, with the motivations mentioned above, we will continue the study of quadratic

gravity in the non-linear regime. In particular, we will be interested in the high energy

limit in which the mass of the spin-2 mode goes to zero while keeping various non-linear

scales fixed. In the case of a pure massive spin-2, this limit is greatly simplified using the

Stückelberg formulation, in which new fields and gauge symmetries are introduced in order
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• massive graviton 

• massive scalar 

Degrees of freedom 
around Minkowski: 

one of these is always ghostly 
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Massive gravity is usually not renormalizable: generic strong coupling at  

to more easily see the non-linear dynamics of the longitudinal modes of the massive spin-

2 [20–24] (see [25, 26] for reviews). In particular, this formalism has been instrumental in

finding fully non-linear theories [27] free [28] from Boulware-Deser modes [29].

Since quadratic curvature gravity contains a massive spin-2 mode, it is natural to

expect that the Stückelberg formulation will simplify the description of its dynamics. Using

the methods of [30,31], we will see that this is indeed the case, and the Stückelberg approach

provides a new, clean and transparent way to see many of the known features of quadratic

curvature gravity. In the case of generic interacting massive gravity, there is a natural strong

coupling scale ⇤5 ⇠ (MPM
4)1/5, and its generalizations in higher and lower dimensions,

which sets the scale of unitarity violation for the interactions of longitudinal modes of the

massive graviton. In the case of massive gravity with no Boulware-Deser mode, this scale

is raised to ⇤3 ⇠ (MPM
2)1/3, and its generalization in other dimensions. We will see that

this higher scale emerges naturally in the Stückelberg analysis of quadratic gravity, and that

the massive graviton propagated by quadratic gravity has no extra non-linear degrees of

freedom.

The interactions of the longitudinal mode, in the decoupling limit in which the mass

is sent to zero with the strong coupling scale held fixed, are described by a cubic galileon.

We find, however, that the non-linear galileon terms are proportional to D � 4, and hence

vanish in the four dimensional case. In this case, there is no higher strong coupling scale

and the theory becomes manifestly renormalizable in the massless limit. This provides a

new way to understand the renormalizability of the theory in four dimensions. With a single

massive graviton, or a ghost-free bi-gravity theory such as those of [32, 33], it is impossible

to raise the strong coupling beyond the ⇤3 scale [34]. But allowing a relative ghost between

the kinetic terms makes this possible, as quadratic curvature gravity demonstrates. The

Stückelberg approach makes it easy to see how the ghost and non-ghost graviton interplay

and cancel at higher energies in order to render the theory renormalizable.

2 Second order action and linear degrees of freedom

The Stückelberg trick works by restoring the gauge invariance broken by the mass terms

of massive fields. In the case of quadratic curvature gravity, the theory is already di↵eo-
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Longitudinal modes of massive graviton described by a non-
renormalizable galileon lagrangian: 

We can write the K tensor in terms of the full metric as well, using a square root matrix
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Quadratic Curvature gravity as massive gravity

Quadratic gravity, being renormalizable, should have no strong coupling scale 

How does its massive graviton evade the ubiquitous      strong coupling? ⇤3

We will use the Stückelberg trick to easily see how 

We use techniques developed in:  
Claudia de Rham, Gregory Gabadadze, David Pirtskhalava, Andrew Tolley, Itay Yavin
“Nonlinear Dynamics of 3D Massive Gravity”
arXiv:1103.1351 
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Quadratic gravity is a 4-th order theory: 

Any non-degenerate higher order theory can be written in second order form using auxiliary 
variables. 
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Here m2, M2 are the mass scales of new physics, and M2
P is the Planck mass scale.

This action has been studied regularly from the non-perturbative viewpoint since the

early work [5–10] (see e.g. the recent work [11–19]). In particular, around its Minkowski

solution the theory propagates, in addition to the massless graviton, a massive spin-2 degree

of freedom with mass squareM2 and a massive scalar degree of freedom with mass squarem2.

The theory has been argued to be renormalizable, essentially due to the improved ⇠ 1/k4

behavior of the propagator [5]. The traditional problem, obstructing its status as a complete

theory of quantum gravity, is a ghost instability; around the same flat background for which

the theory is renormalizable, the kinetic terms for the massless graviton and massive spin-2

have opposite signs, so one of them must always be ghostly.

Here, with the motivations mentioned above, we will continue the study of quadratic

gravity in the non-linear regime. In particular, we will be interested in the high energy

limit in which the mass of the spin-2 mode goes to zero while keeping various non-linear

scales fixed. In the case of a pure massive spin-2, this limit is greatly simplified using the

Stückelberg formulation, in which new fields and gauge symmetries are introduced in order

2

Quadratic gravity is a 4-th order theory: 

Any non-degenerate higher order theory can be written in second order form using auxiliary 
variables. 
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which we have excluded by demanding the presence of the Einstein-Hilbert term), (1.1) can
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Next we want to eliminate the Weyl squared part, which we accomplish through the
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where Gµ⌫ is the Einstein tensor of gµ⌫ , and indices are always moved with gµ⌫ . The fµ⌫

equations of motion can be solved to give fµ⌫ = 1
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�
Rµ⌫ � 1

6Rgµ⌫
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, which when plugged

into (2.5) recovers (2.4). The theory is now manifestly second order.

This second order action is the easiest starting point from which to see the linear

spectrum of fluctuations at the Lagrangian level. Expanding to second order in fluctuations
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where Gµ⌫ is the Einstein tensor of gµ⌫ , and indices are always moved with gµ⌫ . The fµ⌫
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Here m2, M2 are the mass scales of new physics, and M2
P is the Planck mass scale.

This action has been studied regularly from the non-perturbative viewpoint since the

early work [5–10] (see e.g. the recent work [11–19]). In particular, around its Minkowski

solution the theory propagates, in addition to the massless graviton, a massive spin-2 degree

of freedom with mass squareM2 and a massive scalar degree of freedom with mass squarem2.

The theory has been argued to be renormalizable, essentially due to the improved ⇠ 1/k4

behavior of the propagator [5]. The traditional problem, obstructing its status as a complete

theory of quantum gravity, is a ghost instability; around the same flat background for which

the theory is renormalizable, the kinetic terms for the massless graviton and massive spin-2

have opposite signs, so one of them must always be ghostly.

Here, with the motivations mentioned above, we will continue the study of quadratic

gravity in the non-linear regime. In particular, we will be interested in the high energy

limit in which the mass of the spin-2 mode goes to zero while keeping various non-linear

scales fixed. In the case of a pure massive spin-2, this limit is greatly simplified using the

Stückelberg formulation, in which new fields and gauge symmetries are introduced in order
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Next we want to eliminate the Weyl squared part, which we accomplish through the
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where Gµ⌫ is the Einstein tensor of gµ⌫ , and indices are always moved with gµ⌫ . The fµ⌫

equations of motion can be solved to give fµ⌫ = 1
M2

�
Rµ⌫ � 1

6Rgµ⌫
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, which when plugged

into (2.5) recovers (2.4). The theory is now manifestly second order.

This second order action is the easiest starting point from which to see the linear

spectrum of fluctuations at the Lagrangian level. Expanding to second order in fluctuations
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Linear spectrum
around the background gµ⌫ = ⌘µ⌫ , fµ⌫ = 0,  = 0, with the metric fluctuation defined as
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where (Eh)µ⌫ ⌘ ⇤hµ⌫ � ⌘µ⌫⇤h� 2@(µ@⇢h⌫)⇢ + @µ@⌫h + ⌘µ⌫@
⇢@�h⇢� is the standard graviton

kinetic operator. We may diagonalize the tensor kinetic terms with the field redefinition
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with the (in)famous relative minus sign between the two tensor modes. The degrees of

freedom are:

1. a massive scalar field  , with mass squared m2,

2. a massless spin-2 field h0
ab,

3. a massive (ghost) spin-2 field fab, with mass squared M2.

We can make the massive spin-2 healthy, at the expense of making the massless spin-2

and scalar ghostly, by flipping the overall sign of the action, but we cannot remove all the

instabilities3.

3 Stückelberg

In this section we will generalize to D dimensions in order to illustrate cancelations that

occur for D = 4. The scalar  plays no role in what follows and merely comes for the ride,

so we will temporarily drop it, starting with the fourth order action containing only the

3Some approaches towards the ghost problem are to break Lorentz invariance [36], sacrifice unitarity [37],

try to quantize in a non-standard fashion [38], introduce non-locality [39–41], or try to argue that something

cuts o↵ the infinite phase space integral in the decay rate of the vacuum, making the vacuum long-lived

enough to be acceptable [42].
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with the (in)famous relative minus sign between the two tensor modes. The degrees of

freedom are:

1. a massive scalar field  , with mass squared m2,

2. a massless spin-2 field h0
ab,

3. a massive (ghost) spin-2 field fab, with mass squared M2.

We can make the massive spin-2 healthy, at the expense of making the massless spin-2

and scalar ghostly, by flipping the overall sign of the action, but we cannot remove all the

instabilities3.

3 Stückelberg

In this section we will generalize to D dimensions in order to illustrate cancelations that

occur for D = 4. The scalar  plays no role in what follows and merely comes for the ride,

so we will temporarily drop it, starting with the fourth order action containing only the

3Some approaches towards the ghost problem are to break Lorentz invariance [36], sacrifice unitarity [37],

try to quantize in a non-standard fashion [38], introduce non-locality [39–41], or try to argue that something

cuts o↵ the infinite phase space integral in the decay rate of the vacuum, making the vacuum long-lived

enough to be acceptable [42].
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The action (2.5) has ordinary di↵eomorphism invariance, under which fµ⌫ (and  )

transforms as an ordinary tensor. But it is really a two-tensor theory propagating a massive

spin-2 mode. A massive spin-2 propagates vector and scalar longitudinal modes, so following

[22], we should introduce a second di↵eomorphism symmetry and a U(1) in order to make

all the physics manifest. We do this through the Stückelberg replacement

fµ⌫ ! fµ⌫ +rµṼ⌫ +r⌫Ṽµ, Ṽµ = Vµ + @µ⇡. (3.3)

We have introduced two new fields Vµ and ⇡, along with two new gauge symmetries with

gauge parameters ⇤µ and ⇤,
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where Fµ⌫ = rµṼ⌫ �r⌫Ṽµ = rµV⌫ �r⌫Vµ is the Maxwell field strength of Vµ. All covariant

derivatives and index movements are with respect to gµ⌫ .

The full non-linear degree of freedom counting is now manifest [30, 31]. The theory

has been cast into second order form with purely first class gauge symmetries, so the degree

of freedom count is (number of fields)� 2(number of gauge symmetries). The gauge strikes

twice because one field will be a Lagrange multiplier which enforces the gauge constraint.

For example, in D = 4 we have 25 fields (two symmetric tensors with 10 components each,
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⌘�
, (3.5)
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We have introduced two new fields Vµ and ⇡, along with two new gauge symmetries with

gauge parameters ⇤µ and ⇤,

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ, �Vµ = �⇤µ + @µ⇤, �⇡ = ⇤ . (3.4)

The action (3.2) now takes the form

S = MD�2
P

Z
dDx

p
�g


1

2
R + fµ⌫Gµ⌫ �

1

2
M2

�
fµ⌫f

µ⌫ � f 2
�
� 1

2
M2F 2

µ⌫

+2M2Rµ⌫Ṽ
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We have introduced two new fields Vµ and ⇡, along with two new gauge symmetries with

gauge parameters ⇤µ and ⇤,

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ, �Vµ = �⇤µ + @µ⇤, �⇡ = ⇤ . (3.4)

The action (3.2) now takes the form

S = MD�2
P

Z
dDx

p
�g


1

2
R + fµ⌫Gµ⌫ �

1

2
M2

�
fµ⌫f

µ⌫ � f 2
�
� 1

2
M2F 2

µ⌫

+2M2Rµ⌫Ṽ
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(ĥµ⌫ , f̂µ⌫), Vµ ⇠ 1

M
D
2 �1
P M

V̂µ, ⇡ ⇠ 1

M
D
2 �1
P M2

⇡̂, (4.1)

we can read o↵ the strong coupling scale from any given interaction term. The lowest possible

scales are those coming from ⇡ self-interactions or interactions with one V and the rest ⇡,

but these are not present in (3.5). The lowest scale present in (3.5) is

⇤D+2
D�2

=
⇣
M

4
D�2MP

⌘D�2
D+2

, (4.2)

coming from self interactions with one h or f and the rest ⇡’s. We will be interested in

taking the decoupling limit

M ! 0, MP ! 1, ⇤D+2
D�2

fixed. (4.3)

This is a high energy limit in which the massive graviton is becoming massless with the

leading strong coupling scale held fixed.

The action in this limit reduces to the flat space action

S = MD�2
P

Z
dDx


1

8
hµ⌫ (Eh)µ⌫ �

1

2
fµ⌫ (Eh)µ⌫ �

1

2
M2F 2

µ⌫ � 2M2fµ⌫ (@µ@⌫⇡ � ⌘µ⌫⇤⇡)

+2M2RL
µ⌫(h)@

µ⇡@⌫⇡

�
, (4.4)

where RL
µ⌫(h) is the linearized Ricci tensor. The gauge symmetries in the decoupling limit

7

Canonically normalize:



Decoupling limit

one vector with 4 components, and one scalar) and 9 gauge symmetries (two di↵eomorphisms

with 4 components each, and a U(1)), which leaves 25 � 2 · 9 = 7 degrees of freedom, the

correct number for a massless graviton and a massive graviton. Thus there is no Boulware-

Deser like [29] extra degree of freedom associated with the massive spin-2.

4 Decoupling limit

After canonically normalizing the fields (note that the kinetic term for ⇡ comes from mixing

with fµ⌫),

(hµ⌫ , fµ⌫) ⇠
1

M
D
2 �1
P
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�fµ⌫ = @µ⇤⌫ + @⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0, (4.5)

with ⇠µ the di↵eomorphism parameter. It is easy to see that (4.4) is invariant under these.

We can decouple the scalar and diagonalize the kinetic terms by making the field

redefinition

hµ⌫ ! 2
�
h0
µ⌫ + f 0

µ⌫

�
� 4

D � 2
M2⌘µ⌫⇡,

fµ⌫ ! f 0
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2
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, (4.6)

after which the action becomes
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M4(@⇡)2

�2M4(D � 4)
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�
. (4.7)

The only interaction is the final term in (4.7), which is a cubic galileon interaction4

[44, 45]. For D 6= 4, this describes the non-linear high-energy dynamics of the longitudinal

mode of the massive graviton. It is straightforward to see that the 4 particle amplitude for

⇡ scattering is non-vanishing and violates perturbative unitarity at the scale ⇤D+2
D�2

, so the

theory is perturbatively non-renormalizable at this intermediate scale. Any physics lost in the

decoupling limit cannot enter until a higher scale parametrically suppressed byMP , so as long

asM ⌧ MP , so that the decoupling limit makes sense, there is a regime in which perturbative

unitarity is violated. ForD = 3, (3.1) reduces to the case of new massive gravity [46] (studied

using the methods here in [30]), which was argued to be non-renormalizable in [47]. Quadratic

gravity for D > 4 has also been argued to be non-renormalizable [48].

4The galileon has a well-known global symmetry ⇡ ! ⇡ + c + bµx
µ, for constants c, bµ where x

µ is the

spacetime coordinate, stemming from the fact that ⇡ always appears with two derivatives in (3.3). The

D = 3 case is special in that the galileon interaction in (4.4) has an enhanced shift symmetry [43]. It is not

yet clear what the gravitational origin of this might be.
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with 4 components each, and a U(1)), which leaves 25 � 2 · 9 = 7 degrees of freedom, the
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Canonically normalize:

reduce to their linear versions,

�hµ⌫ = @µ⇠⌫ + @⌫⇠⌫ ,

�fµ⌫ = @µ⇤⌫ + @⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0, (4.5)

with ⇠µ the di↵eomorphism parameter. It is easy to see that (4.4) is invariant under these.

We can decouple the scalar and diagonalize the kinetic terms by making the field

redefinition

hµ⌫ ! 2
�
h0
µ⌫ + f 0

µ⌫

�
� 4

D � 2
M2⌘µ⌫⇡,

fµ⌫ ! f 0
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. (4.7)

The only interaction is the final term in (4.7), which is a cubic galileon interaction4

[44, 45]. For D 6= 4, this describes the non-linear high-energy dynamics of the longitudinal

mode of the massive graviton. It is straightforward to see that the 4 particle amplitude for

⇡ scattering is non-vanishing and violates perturbative unitarity at the scale ⇤D+2
D�2

, so the

theory is perturbatively non-renormalizable at this intermediate scale. Any physics lost in the

decoupling limit cannot enter until a higher scale parametrically suppressed byMP , so as long

asM ⌧ MP , so that the decoupling limit makes sense, there is a regime in which perturbative

unitarity is violated. ForD = 3, (3.1) reduces to the case of new massive gravity [46] (studied

using the methods here in [30]), which was argued to be non-renormalizable in [47]. Quadratic

gravity for D > 4 has also been argued to be non-renormalizable [48].

4The galileon has a well-known global symmetry ⇡ ! ⇡ + c + bµx
µ, for constants c, bµ where x

µ is the

spacetime coordinate, stemming from the fact that ⇡ always appears with two derivatives in (3.3). The

D = 3 case is special in that the galileon interaction in (4.4) has an enhanced shift symmetry [43]. It is not

yet clear what the gravitational origin of this might be.
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It turns out there are none. 

For D = 4, however, the galileon interaction term vanishes, a signal that the true

strong coupling scale is higher. For this case, we must search for non-trivial operators at

higher scales.

5 Massless limit

As we will see now, in D = 4 there is in fact no higher intermediate scale for which there are

non-trivial interaction terms, and thus there is no obstruction to taking a straight M ! 0

limit with MP held fixed.

To see this, fix D = 4 in (3.5) and make the field redefinition

fµ⌫ ! f 0
µ⌫ +

1

2
gµ⌫ � 2M2


ṼµṼ⌫ �

1

2
gµ⌫Ṽ

2

�
, (5.1)

after which the action has the following finite and smooth limit as M2 ! 0 with the canon-

ically normalized fields held fixed,

S = M2
P

Z
d4x

p
�g


� 1

2
M2F 2

µ⌫ + 3M4(@⇡)2

+ f 0µ⌫
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Gµ⌫ � 2M2 (rµr⌫⇡ � gµ⌫⇤⇡) + 2M4

✓
rµ⇡r⌫⇡ +

1

2
gµ⌫(@⇡)

2

◆◆�
.

(5.2)

The gauge symmetries in the massless limit reduce to ordinary di↵eomorphisms for gµ⌫ , fµ⌫ ,

Vµ and ⇡ along with the massless limit of the second set of symmetries (3.4) expressed in

terms of f 0
µ⌫ ,

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ � 2M2 (rµ⇡⇤⌫ +r⌫⇡⇤µ � gµ⌫r⇢⇡⇤⇢) ,

�Vµ = @µ⇤,

�⇡ = 0. (5.3)

The action (5.2) is invariant under these transformations.

Noting thatGµ⌫

h
e2M

2⇡gµ⌫

i
= Gµ⌫�2M2 (rµr⌫⇡ � gµ⌫⇤⇡)+2M4

�
rµ⇡r⌫⇡ + 1

2gµ⌫(@⇡)
2
�
,

we can simplify (5.2) by a making a conformal transformation

gµ⌫ ! e�2M2⇡gµ⌫ , (5.4)
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ṼµṼ⌫ �

1

2
gµ⌫Ṽ
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and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.

If quadratic gravity is renormalizable, there should be no non-trivial non-renormalizable

operators present at any scale, even MP . We will now argue that this is indeed the case for

(5.5). Upon expanding5 gµ⌫ = ⌘µ⌫ + hµ⌫ , f 0
µ⌫ = 1

2⌘µ⌫ + �fµ⌫ and then diagonalizing the two

graviton kinetic terms with the redefinition,

hµ⌫ = h̃µ⌫ + f̃µ⌫ , �fµ⌫ = f̃µ⌫ �
1

2
h̃µ⌫ , (5.7)

the action expanded around flat space reads
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d4x


3

8
h̃µ⌫

⇣
E h̃

⌘

µ⌫
� 3

8
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h
h̃+ f̃

i
+ L(�1)

V,⇡

h
h̃+ f̃ , V, ⇡

i �
.

(5.8)

Here
p
�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the

5Note that in this massless limit there is now a moduli space of solutions f

0
µ⌫ = c⌘µ⌫ , gµ⌫ = ⌘µ⌫ for

constant c, which is not present away from the massless limit. To keep the solution which exists away from

the massless limit, we take c = 1
2 corresponding to the background where fµ⌫ = 0.
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No obstruction to taking a straight massless M → 0 limit: 

Weyl transformation:



D=4 massless limit

Galileon term vanishes when D=4:  we must look for scales higher than  ⇤3

If the theory is renormalizable, there should be no strong coupling at 
all, even at MP 

It turns out there are none. 

For D = 4, however, the galileon interaction term vanishes, a signal that the true

strong coupling scale is higher. For this case, we must search for non-trivial operators at

higher scales.

5 Massless limit

As we will see now, in D = 4 there is in fact no higher intermediate scale for which there are

non-trivial interaction terms, and thus there is no obstruction to taking a straight M ! 0

limit with MP held fixed.

To see this, fix D = 4 in (3.5) and make the field redefinition

fµ⌫ ! f 0
µ⌫ +

1

2
gµ⌫ � 2M2


ṼµṼ⌫ �

1

2
gµ⌫Ṽ

2

�
, (5.1)

after which the action has the following finite and smooth limit as M2 ! 0 with the canon-

ically normalized fields held fixed,
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◆◆�
.

(5.2)

The gauge symmetries in the massless limit reduce to ordinary di↵eomorphisms for gµ⌫ , fµ⌫ ,

Vµ and ⇡ along with the massless limit of the second set of symmetries (3.4) expressed in

terms of f 0
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�⇡ = 0. (5.3)
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h
e2M
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= Gµ⌫�2M2 (rµr⌫⇡ � gµ⌫⇤⇡)+2M4

�
rµ⇡r⌫⇡ + 1

2gµ⌫(@⇡)
2
�
,

we can simplify (5.2) by a making a conformal transformation

gµ⌫ ! e�2M2⇡gµ⌫ , (5.4)

9

Field re-definition removes all operators suppressed by scales < MP

For D = 4, however, the galileon interaction term vanishes, a signal that the true

strong coupling scale is higher. For this case, we must search for non-trivial operators at

higher scales.

5 Massless limit

As we will see now, in D = 4 there is in fact no higher intermediate scale for which there are

non-trivial interaction terms, and thus there is no obstruction to taking a straight M ! 0

limit with MP held fixed.

To see this, fix D = 4 in (3.5) and make the field redefinition

fµ⌫ ! f 0
µ⌫ +

1

2
gµ⌫ � 2M2
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For D = 4, however, the galileon interaction term vanishes, a signal that the true
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5 Massless limit
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non-trivial interaction terms, and thus there is no obstruction to taking a straight M ! 0
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The gauge symmetries in the massless limit reduce to ordinary di↵eomorphisms for gµ⌫ , fµ⌫ ,

Vµ and ⇡ along with the massless limit of the second set of symmetries (3.4) expressed in

terms of f 0
µ⌫ ,

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ � 2M2 (rµ⇡⇤⌫ +r⌫⇡⇤µ � gµ⌫r⇢⇡⇤⇢) ,
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�⇡ = 0. (5.3)
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Noting thatGµ⌫
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i
= Gµ⌫�2M2 (rµr⌫⇡ � gµ⌫⇤⇡)+2M4
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rµ⇡r⌫⇡ + 1

2gµ⌫(@⇡)
2
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,

we can simplify (5.2) by a making a conformal transformation

gµ⌫ ! e�2M2⇡gµ⌫ , (5.4)
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after which it becomes

S = M2
P

Z
d4x

p
�g


f 0µ⌫Gµ⌫ �

1

2
M2F 2

µ⌫ + 3M4e�2M2⇡(@⇡)2
�
, (5.5)

and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.

If quadratic gravity is renormalizable, there should be no non-trivial non-renormalizable

operators present at any scale, even MP . We will now argue that this is indeed the case for

(5.5). Upon expanding5 gµ⌫ = ⌘µ⌫ + hµ⌫ , f 0
µ⌫ = 1

2⌘µ⌫ + �fµ⌫ and then diagonalizing the two

graviton kinetic terms with the redefinition,

hµ⌫ = h̃µ⌫ + f̃µ⌫ , �fµ⌫ = f̃µ⌫ �
1

2
h̃µ⌫ , (5.7)

the action expanded around flat space reads

S = M2
P

Z
d4x


3

8
h̃µ⌫

⇣
E h̃

⌘

µ⌫
� 3

8
f̃µ⌫

⇣
E f̃

⌘

µ⌫
� 1

2
M2F 2

µ⌫ + 3M4e�2M2⇡(@⇡)2

+

✓
f̃µ⌫ �

1

2
h̃µ⌫

◆p
�gG(�2)µ⌫

h
h̃+ f̃

i
+ L(�1)

V,⇡

h
h̃+ f̃ , V, ⇡

i �
.

(5.8)

Here
p
�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the

5Note that in this massless limit there is now a moduli space of solutions f

0
µ⌫ = c⌘µ⌫ , gµ⌫ = ⌘µ⌫ for

constant c, which is not present away from the massless limit. To keep the solution which exists away from

the massless limit, we take c = 1
2 corresponding to the background where fµ⌫ = 0.
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No obstruction to taking a straight massless M → 0 limit: 

Weyl transformation:



D=4 massless limit

after which it becomes
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�
, (5.5)

and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.

If quadratic gravity is renormalizable, there should be no non-trivial non-renormalizable

operators present at any scale, even MP . We will now argue that this is indeed the case for

(5.5). Upon expanding5 gµ⌫ = ⌘µ⌫ + hµ⌫ , f 0
µ⌫ = 1

2⌘µ⌫ + �fµ⌫ and then diagonalizing the two

graviton kinetic terms with the redefinition,

hµ⌫ = h̃µ⌫ + f̃µ⌫ , �fµ⌫ = f̃µ⌫ �
1

2
h̃µ⌫ , (5.7)

the action expanded around flat space reads
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i �
.

(5.8)

Here
p
�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the

5Note that in this massless limit there is now a moduli space of solutions f

0
µ⌫ = c⌘µ⌫ , gµ⌫ = ⌘µ⌫ for

constant c, which is not present away from the massless limit. To keep the solution which exists away from

the massless limit, we take c = 1
2 corresponding to the background where fµ⌫ = 0.
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after which it becomes
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, (5.5)

and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.

If quadratic gravity is renormalizable, there should be no non-trivial non-renormalizable

operators present at any scale, even MP . We will now argue that this is indeed the case for

(5.5). Upon expanding5 gµ⌫ = ⌘µ⌫ + hµ⌫ , f 0
µ⌫ = 1

2⌘µ⌫ + �fµ⌫ and then diagonalizing the two

graviton kinetic terms with the redefinition,

hµ⌫ = h̃µ⌫ + f̃µ⌫ , �fµ⌫ = f̃µ⌫ �
1

2
h̃µ⌫ , (5.7)

the action expanded around flat space reads
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(5.8)

Here
p
�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the

5Note that in this massless limit there is now a moduli space of solutions f

0
µ⌫ = c⌘µ⌫ , gµ⌫ = ⌘µ⌫ for

constant c, which is not present away from the massless limit. To keep the solution which exists away from

the massless limit, we take c = 1
2 corresponding to the background where fµ⌫ = 0.
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after which it becomes
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�
, (5.5)

and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.

If quadratic gravity is renormalizable, there should be no non-trivial non-renormalizable

operators present at any scale, even MP . We will now argue that this is indeed the case for

(5.5). Upon expanding5 gµ⌫ = ⌘µ⌫ + hµ⌫ , f 0
µ⌫ = 1

2⌘µ⌫ + �fµ⌫ and then diagonalizing the two

graviton kinetic terms with the redefinition,

hµ⌫ = h̃µ⌫ + f̃µ⌫ , �fµ⌫ = f̃µ⌫ �
1

2
h̃µ⌫ , (5.7)
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(5.8)

Here
p
�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the

5Note that in this massless limit there is now a moduli space of solutions f

0
µ⌫ = c⌘µ⌫ , gµ⌫ = ⌘µ⌫ for

constant c, which is not present away from the massless limit. To keep the solution which exists away from

the massless limit, we take c = 1
2 corresponding to the background where fµ⌫ = 0.
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Expand in fluctuations and diagonalize:



D=4 massless limit

after which it becomes

S = M2
P

Z
d4x

p
�g


f 0µ⌫Gµ⌫ �

1

2
M2F 2

µ⌫ + 3M4e�2M2⇡(@⇡)2
�
, (5.5)

and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.

If quadratic gravity is renormalizable, there should be no non-trivial non-renormalizable

operators present at any scale, even MP . We will now argue that this is indeed the case for

(5.5). Upon expanding5 gµ⌫ = ⌘µ⌫ + hµ⌫ , f 0
µ⌫ = 1

2⌘µ⌫ + �fµ⌫ and then diagonalizing the two

graviton kinetic terms with the redefinition,
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1

2
h̃µ⌫ , (5.7)

the action expanded around flat space reads
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(5.8)

Here
p
�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the

5Note that in this massless limit there is now a moduli space of solutions f

0
µ⌫ = c⌘µ⌫ , gµ⌫ = ⌘µ⌫ for

constant c, which is not present away from the massless limit. To keep the solution which exists away from

the massless limit, we take c = 1
2 corresponding to the background where fµ⌫ = 0.

10

after which it becomes

S = M2
P

Z
d4x

p
�g


f 0µ⌫Gµ⌫ �

1

2
M2F 2

µ⌫ + 3M4e�2M2⇡(@⇡)2
�
, (5.5)

and the gauge symmetry (5.3) becomes (taking ⇤µ to be independent of the metric)

�fµ⌫ = rµ⇤⌫ +r⌫⇤µ,

�Vµ = @µ⇤,

�⇡ = 0. (5.6)

This action describes the high energy dynamics of quadratic gravity in four dimensions.
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Here
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�gG(�2)µ⌫ [h] stands for the terms of order h2 and higher obtained from expanding

the Einstein tensor and metric determinant, and L(�1)
V,⇡ [h, V, ⇡] the terms of order h and

higher obtained from expanding the minimally coupled V and ⇡ lagrangians.

We see that the scalar and vector couple only to the combination (h̃ + f̃)µ⌫ . Since

h̃ and f̃ have equal and opposite propagators, and equal couplings to V, ⇡, we can see

that there will be a cancellation in pairs among all Feynman diagrams with external V, ⇡

lines. For each diagram with an internal h̃, there is an equal and opposite one in which the
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0
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D=4 massless limit

Field re-definition completely eliminates interactions: 

internal h̃ is replaced by an internal f̃ . This is the mechanism by which the theory becomes

renormalizable; the bad high energy behavior of the graviton cancels against the bad high

energy behavior of the ghost.

This leads us to suspect that the action (5.5) is in fact a free action in disguise, as we

will now argue. The key observation is that the kinetic terms for h̃, f̃ are invariant under an

internal SO(1, 1) symmetry, so making the following field redefinition, depending on some

parameter ↵,
 

h̃µ⌫

f̃µ⌫

!
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cosh↵ sinh↵

sinh↵ cosh↵
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Now take the limit ↵ ! �1. All the gravitational interactions, i.e. the final two lines of

(5.10), scale away, and we are left with the flat-space action of the first line
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This is a completely free theory (the scalar self-interactions can be absorbed with a field

re-definition ⇡ ! � 1
M2 log(M2⇡) ), thus the high energy dynamics of the theory is trivial,

illustrating why the theory is renormalizable. We see clearly the role that the ghost graviton

plays in making this work. At high energies, the ghost graviton interactions cancel precisely

the standard gravitational interactions, rendering the theory asymptotically free.

If we bring back the scalar field  from section 2, keeping its mass m2 fixed as we scale

M ! 0, and remembering the conformal transformation (5.4), we find, after scaling

⇡ ! ⇡

2M2
, (5.12)

that the ↵ ! �1 limiting action becomes the flat space action

S = M2
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4
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�
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M2 log(M2⇡) ), thus the high energy dynamics of the theory is trivial,

illustrating why the theory is renormalizable. We see clearly the role that the ghost graviton

plays in making this work. At high energies, the ghost graviton interactions cancel precisely
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D=4 massless limit

Bringing back the scalar:
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We can field re-define to find an explicitly renormalizable interaction

in addition to the free vector and two free gravitons. Now we see a relative ghost sign

between the scalar  coming from the original R2 term and the scalar ⇡ coming from the

longitudinal mode of the massive graviton. The potential in (5.13) has a moduli space of

vacua along the line  = 0, ⇡ = c parametrized by the constant c. The  field has mass

m2
 = m2e�2c along this line whereas ⇡ remains massless.

(5.13) is a sigma model with two-dimensional Minkowski target space in a Milne slicing.

We can canonicalize the kinetic terms by going to flat field space coordinates via the field

redefinition

⇡ = � log
⇣
⇡̃2 �  ̃2

⌘
,  = log

 
⇡̃ +  ̃

⇡̃ �  ̃

!
, (5.14)

after which (5.13) becomes

S = 3M2
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d4x (@⇡̃)2 � (@ ̃)2 +m2 ̃2

⇣
⇡̃ �  ̃

⌘2
. (5.15)

This allows us to analytically continue the range of field space; the region covered by (⇡, )

corresponds to the region ⇡̃2 >  ̃2, ⇡̃ > 0. The moduli line of vacua  = 0 corresponds to the

line  ̃ = 0, with our original vacuum (⇡ = 0, = 0) corresponding to (⇡̃ = 1,  ̃ = 0), and the

point c ! 1 where the fields become massless corresponding to the origin (⇡̃ = 0,  ̃ = 0).

In addition, there is a new line of vacua given by ⇡̃ =  ̃, which is not covered by the original

⇡, coordinates.

The action (5.15) contains only renormalizable interactions, with mass terms of order

⇠ m2 and couplings of order ⇠ m2/M2
P . Thus, even with R2 terms, we see explicitly the

absence of strong coupling scales in the quadratic gravity decoupling limit, reflecting the

renormalizability of the theory.

As with the gravitons, the scalar kinetic terms in (5.15) have an internal SO(1, 1)

symmetry. Our original vacuum at (⇡̃ = 1,  ̃ = 0) is not invariant under this action, but we

can simplify the description of the S-matrix about the massless (⇡̃ = 0,  ̃ = 0) vacuum by

making the following field redefinition,
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The kinetic terms remain invariant and the action (5.15) becomes, in the limit ↵ ! 1,
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Renormalizable 𝜙4 -type potential with coupling � ⇠ m2

M2
P



Conclusions

• Quadratic curvature gravity in the high-energy limit is greatly 
simplified using the Stückelberg trick 

• Makes the renormalizability/asymptotic freedom of the theory 
easy to see 

• Shows how the massive graviton overcomes the     strong 
coupling scale 

• Shows the necessity of the ghost in making this possible 
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