Massive gravity and cosmology

Shinji Mukohyama (YITP Kyoto)

Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshana Lin, Ryo Namba, Atsushi Naruko, Takahiro Tanaka, Norihiro Tanahashi, Mark Trodden
Massive gravity: history

Simple question: Can graviton have mass?
May lead to acceleration without dark energy
Simple question: Can graviton have mass?
May lead to acceleration without dark energy

Fierz-Pauli theory (1939)
Unique linear theory without instabilities (ghosts)
Massive gravity: history

Simple question: Can graviton have mass?
May lead to acceleration without dark energy

Yes?
No?

Fierz-Pauli theory (1939)
Unique linear theory without instabilities (ghosts)

van Dam-Veltman-Zhakharov discontinuity (1970)
Massless limit \neq
General Relativity
Massive gravity: history

Simple question: Can graviton have mass?
May lead to acceleration without dark energy

Yes? No?

Vainshtein mechanism (1972)
Nonlinearity \rightarrow Massless limit \neq General Relativity

Fierz-Pauli theory (1939)
Unique linear theory without instabilities (ghosts)

van Dam-Veltman-Zhakharov discontinuity (1970)
Massless limit \neq General Relativity
Simple question: Can graviton have mass? May lead to acceleration without dark energy.
Massive gravity: history

Simple question: Can graviton have mass?
May lead to acceleration without dark energy

Yes?

- de Rham-Gabadadze-Tolley (2010)
 First example of nonlinear massive gravity without BD ghost since 1972

- Vainshtein mechanism (1972)
 Nonlinearity → Massless limit = General Relativity

- Fierz-Pauli theory (1939)
 Unique linear theory without instabilities (ghosts)

No?

- Boulware-Deser ghost (1972)
 6th d.o.f. @ Nonlinear level → Instability (ghost)

- van Dam-Veltman-Zhakharov discontinuity (1970)
 Massless limit ≠ General Relativity
Cosmological solutions in nonlinear massive gravity

Good?

Bad?

D'Amico, et.al. (2011)
Non-existence of flat FLRW (homogeneous isotropic) universe!
Cosmological solutions in nonlinear massive gravity

Good?

Open universes with self-acceleration
GLM (2011a)

Bad?

D'Amico, et.al. (2011)
Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
Cosmological solutions in nonlinear massive gravity

Good?

Bad?

More general fiducial metric $f_{\nu\mu}$
Closed/flat/open FLRW universes allowed
GLM (2011b)

Open universes with self-acceleration
GLM (2011a)

D'Amico, et.al. (2011)
Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
Summary of introduction + α

- Nonlinear massive gravity
 free from BD ghost
- FLRW background
 No closed/flat universe
 Open universes with self-acceleration!
- More general fiducial metric $f_{\mu\nu}$
 closed/flat/open FLRW universes allowed
 Friedmann eq does not depend on $f_{\mu\nu}$
- Cosmological linear perturbations
 Scalar/vector sectors \rightarrow same as in GR
 Tensor sector \rightarrow time-dependent mass
Nonlinear instability

DeFelice, Gumrukcuoglu, Mukohyama, arXiv: 1206.2080 [hep-th]

- de Sitter or FLRW fiducial metric
- Pure gravity + bare cc \rightarrow FLRW sol = de Sitter
- Bianchi I universe with axisymmetry + linear perturbation (without decoupling limit)
- Small anisotropy expansion of Bianchi I + linear perturbation
 \rightarrow nonlinear perturbation around flat FLRW

- **Odd-sector:**
 1 healthy mode + 1 healthy or ghosty mode

- **Even-sector:**
 2 healthy modes + 1 ghosty mode

- This is not BD ghost nor Higuchi ghost.
Cosmological solutions in nonlinear massive gravity

Good?

More general fiducial metric $f_{\mu\nu}$

- Closed/flat/open FLRW universes allowed
 - GLM (2011b)

- Open universes with self-acceleration
 - GLM (2011a)

Bad?

NEW

- Nonlinear instability of FLRW solutions
 - DGM (2012)

- D'Amico, et.al. (2011)
 - Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
DGM = DeFelice-Gumrukcuoglu-Mukohyama
Generic vs degenerate solutions

- Self-accelerating FLRW solution [GLM 2011a,b]
 \[(3-2X) + (3-X)(1-X)\alpha_3 + (1-X)^2\alpha_4 = 0, \quad X = \frac{a_f}{a_g}\]
 \[\rightarrow \text{generically two solutions } X = X_{\pm}\]
- Generic case with \(X_- \neq X_+\) [DGM 2012]

\[\text{Quadratic kinetic terms } = 0 \quad [\text{GLM 2011b}]
\text{Cubic kinetic terms } \neq 0 \rightarrow \text{nonlinear ghost}\]
- Anyway, 3 modes are infinitely strongly coupled
Generic vs degenerate solutions

• Self-accelerating solution [GLM 2011a]

 $$(3-2X) + (3-X)(1-X)\alpha_3 + (1-X)^2\alpha_4 = 0, \quad X = \frac{a_f}{a_g}$$

 \Rightarrow generically two solutions $X = X_{\pm}$

• Degenerate case with $X_- = X_+$ [Masahide’s talk]

 Quadratic kinetic terms = 0 [GLM 2011b]
 Cubic kinetic terms = 0 \Rightarrow Quartic?

• Anyway, 3 modes are infinitely strongly coupled
Cosmological solutions in nonlinear massive gravity

Good?

More general fiducial metric $f_{\mu\nu}$
Closed/flat/open FLRW universes allowed
GLM (2011b)

Open universes with self-acceleration
GLM (2011a)

Bad?

NEW Nonlinear instability of FLRW solutions
DGM (2012)

D'Amico, et.al. (2011)
Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
DGM = DeFelice-Gumrukcuoglu-Mukohyama
New backgrounds or Extended theories

• New nonlinear instability [DeFelice, Gumrukcuoglu, Mukohyama 2012] \rightarrow (i) new backgrounds, or (ii) extended theories

• (i) Anisotropic FLRW (Gumrukcuoglu, Lin, Mukohyama 2012): physical metric is isotropic but fiducial metric is anisotropic

• (ii) Extended quasidilaton (DeFelice&Mukohyama 2013), Bimetric theory (Hassan, Rosen 2011; DeFelice, Nakamura, Tanaka 2013; DeFelice, Gumrukcuoglu, Mukohyama, Tanahashi, Tanaka 2014), Rotation-invariant theory (Rubakov 2004; Dubovsky 2004; Blas, Comelli, Pilo 2009; Comelli, Nesti, Pilo 2012; Langlois, Mukohyama, Namba, Naruko 2014), Composite metric (de Rham, Heisenberg, Ribeiro 2014; Gumrukcuoglu, Heisenberg, Mukohyama 2014, 2015), New quasidilaton (Mukohyama 2014), …

• They provide stable cosmology.
Cosmological solutions in nonlinear massive gravity

Good?

- NEW Class of Solutions
 - Anisotropic FLRW universe
 - GLM (2012)
 - More general fiducial metric $f_{\mu\nu}$
 - closed/flat/open FLRW universes allowed
 - GLM (2011b)
 - Open universes with self-acceleration
 - GLM (2011a)

Bad?

- NEW Nonlinear instability of FLRW solutions
 - D'Amico, et.al. (2011)
 - Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
DGM = DeFelice-Gumrukcuoglu-Mukohyama
New backgrounds or Extended theories

• New nonlinear instability [DeFelice, Gumrukcuoglu, Mukohyama 2012] → (i) new backgrounds, or (ii) extended theories
• (i) Anisotropic FLRW (Gumrukcuoglu, Lin, Mukohyama 2012): physical metric is isotropic but fiducial metric is anisotropic
• (ii) Extended quasidilaton (De Felice&Mukohyama 2013), Bimetric theory (Hassan, Rosen 2011; DeFelice, Nakamura, Tanaka 2013; DeFelice, Gumrukcuoglu, Mukohyama, Tanahashi, Tanaka 2014), Rotation-invariant theory (Rubakov 2004; Dubovsky 2004; Blas, Comelli, Pilo 2009; Comelli, Nesti, Pilo 2012; Langlois, Mukohyama, Namba, Naruko 2014), Composite metric (de Rham, Heisenberg, Ribeiro 2014; Gumrukcuoglu, Heisenberg, Mukohyama 2014, 2015), New quasidilaton (Mukohyama 2014), ...

• They provide stable cosmology.
Cosmological solutions in nonlinear massive gravity

Good?

Extended theories:
- Extended quasidilatonic biometric theory, rotation-invariant theory, composite metric,

More general fiducial metric $f_{\mu \nu}$
closed/flat/open FLRW universes allowed
GLM (2011b)

Open universes with self-acceleration
GLM (2011a)

Bad?

NEW
Nonlinear instability of FLRW solutions
DGM (2012)

D'Amico, et.al. (2011)
Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
DGM = DeFelice-Gumrukcuoglu-Mukohyama
More recent development

Minimal Theory of Massive Gravity

De Felice & Mukohyama, arXiv: 1506.01594

- 2 physical dof only = massive gravitational waves
- exactly same FLRW background as in dRGT
- no BD ghost, no Higuchi ghost, no nonlinear ghost

Three steps to the Minimal Theory

1. Fix local Lorentz to realize ADM vielbein in dRGT
2. Switch to Hamiltonian
3. Add 2 additional constraints
Step 1. Fix local Lorentz to realize ADM vielbein in dRGT

\[\|e^A_\mu\| = \begin{pmatrix} N & \vec{0}^T \\ e^I_i N^i & e^I_j \end{pmatrix} \quad \|E^A_\mu\| = \begin{pmatrix} M & \vec{0}^T \\ E^I_i M^i & E^I_j \end{pmatrix} \]

\[S_{\text{pre}} = \frac{M_p^2}{2} \int d^4 x \sqrt{-g} \mathcal{R}[g_{\mu\nu}] \]

\[+ \frac{M_p^2}{2} m^2 \int d^4 x \left[\frac{c_0}{24} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^A_\alpha E^B_\beta E^C_\gamma E^D_\delta \right. \]

\[+ \frac{c_1}{6} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^A_\alpha E^B_\beta E^C_\gamma E^D_\delta \]

\[+ \frac{c_2}{4} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^A_\alpha E^B_\beta E^C_\gamma e^D_\delta \]

\[+ \frac{c_3}{6} \epsilon_{ABCD} \epsilon^{\alpha\beta\gamma\delta} E^A_\alpha e^B_\beta e^C_\gamma e^D_\delta \]

dRGT potential
Step 2. Switch to Hamiltonian

\[H_{\text{pre}} = \int d^3x \left[-N R_0 - N^i R_i \right] \]

- linear in lapse and shift
- \(\rightarrow 4 \) primary constraints

\[+ m^2 \mathcal{M} \mathcal{H}_1 + \left[\tilde{\lambda}^\alpha \tilde{C}_\alpha \right] \]

- 2 secondary constraints \((\alpha = 1, 2)\)

\[+ \alpha_{MN} \mathcal{P}^{[MN]} + \beta_{MN} Y^{[MN]} \]

- 6 \((= 3 \text{ primary } + 3 \text{ secondary})\) constraints associated with symmetry of spatial vielbein

\[9 \times 2 - 4 - 2 - 6 = 6 \rightarrow 3 \text{ d.o.f.} \]

c.f. consistent with the analysis by Comelli, Nesti and Pilo 2014
Step2. Switch to Hamiltonian

\[H_{pre} = \int d^3 x \left[-N R_0 - N^i R_i \right] \]

linear in lapse and shift
\[\rightarrow 4 \text{ primary constraints} \]

Precursor theory with 3 d.o.f.

\[\begin{align*}
-\frac{m^2}{16\pi} M \mathcal{H}_1 &+ \sum_{\alpha=1,2} \lambda \mathcal{C}_\alpha \\
+ \alpha \epsilon_{MN} F_{MN} Y^{[MN]} &+ \beta \epsilon_{MN} \tilde{Y}^{[MN]} \end{align*} \]

6 (= 3 primary + 3 secondary) constraints associated with symmetry of spatial vielbein

\[9 \times 2 - 4 - 2 - 6 = 6 \rightarrow 3 \text{ d.o.f.} \]

c.f. consistent with the analysis by Comelli, Nesti and Pilo 2014
Step 3. Add 2 additional constraints

\[H = \int d^3x \left[-NR_0 - N^i R_i \right. \]
\[+ m^2 M H_1 + \lambda C_0 + \lambda^i C_i \]
\[+ \alpha_{MN} P^{[MN]} + \beta_{MN} Y^{[MN]} \]
\[C_0 \overset{\dot{}}{=} \{ R_0 , H_1 \} + \frac{\partial R_0}{\partial t} \quad C_l \overset{\dot{}}{=} \{ R_l , H_1 \} \]

Only 2 among \((C_0, C_i)\) are new

6 (from precursor theory) – 2 (additional constraints) = 4 \(\Rightarrow\) 2 d.o.f.
Phenomenology of the minimal theory

• The remaining 2 d.o.f. = massive gravitational waves
• FLRW cosmology: exactly same as dRGT \rightarrow self-accelerating solution
• Absolutely stable: no BD ghost, no Higuchi ghost, no nonlinear ghost
• Constraint from binary pulsar $m_{gw} < 10^{-5}$ Hz
• Stochastic GW? CMB B-mode?
Cosmological solutions in nonlinear massive gravity

Good?

- Minimal Theory of Massive Gravity
 DeFelice&Mukohyama
 (2015)

- More general fiducial metric $f_{\mu\nu}$
 closed/flat/open FLRW universes allowed
 GLM (2011b)

- Open universes with self-acceleration
 GLM (2011a)

Bad?

- NEW
 Nonlinear instability of FLRW solutions
 DGM (2012)

- D'Amico, et.al. (2011)
 Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama
DGM = DeFelice-Gumrukcuoglu-Mukohyama
DGHM = DeFelice-Gumrukcuoglu-Heisenberg-Mukohyama
Summary

• Nonlinear massive gravity free from BD ghost
• FLRW background No closed/flat universe
 Open universes with self-acceleration!
• More general fiducial metric $f_{\mu\nu}$
 closed/flat/open FLRW universes allowed
 Friedmann eq does not depend on $f_{\mu\nu}$
• Cosmological linear perturbations
 Scalar/vector sectors \rightarrow same as in GR
 Tensor sector \rightarrow time-dependent mass

• All homogeneous and isotropic FLRW solutions in the original dRGT theory have ghost
• Stable cosmology realized in (i) new class of cosmological solution or (ii) extended theories
• Minimal theory of massive gravity with 2dof results in stable self-accelerating cosmology
More recent development

Composite vielbein

- Composite metric in terms of vielbain
 \[e^a_{(\text{eff})\mu} = \alpha e^a_{(g)\mu} + \beta e^a_{(f)\mu} \]

- Hamiltonian is linear in N after eliminating local boost \(w_{0I} \) and \(N^i \) [Hinterbichler & Rosen 2015]

- However, Hamiltonian becomes nonlinear after eliminating local rotation \(w_{IJ} \) [de Rham & Tolley 2015]

- Partially constrained vielbein [De Felice, Gumrukcuoglu, Heisenberg, Mukohyama 2015]

 let \(w_{0I} \) be determined by eom while
 let \(w_{IJ} \) be fixed by 3d symmetric condition

 → BD ghost free & stable cosmological sol
New quasidilaton theory

\[I_{\text{newQD}}[g_{\mu\nu}, f_{\mu\nu}, \sigma] = M_{\text{Pl}}^2 m_g^2 \int d^4 x \sqrt{-g} \left[\mathcal{L}_2(\bar{\mathcal{K}}) + \alpha_3 \mathcal{L}_3(\bar{\mathcal{K}}) + \alpha_4 \mathcal{L}_4(\bar{\mathcal{K}}) \right] \]

\[- \frac{\omega}{2} \int d^4 x \sqrt{-g_{\text{eff}}} g_{\mu\nu}^{\text{eff}} \partial_\mu \sigma \partial_\nu \sigma \]

\[g_{\mu\nu}^{\text{eff}} = g_{\mu\nu} + 2\beta e^{\sigma/M_{\text{Pl}}} g_{\mu\rho}(\sqrt{g^{-1}f})^\rho_\nu + \beta^2 e^{2\sigma/M_{\text{Pl}}} f_{\mu\nu} \]

- Quasidilaton kinetic term is now defined on the effective metric \(\rightarrow \) new parameter \(\beta \)

- Self-acccerating de Sitter solution is stable in a range of parameters if \(\beta \) is non-zero
New quasidilaton theory
based on composite metric \(\text{Mukohyama, arXiv: 1410.1996} \)

\[I_{\text{new QD}}[g_{\mu\nu}, f_{\mu\nu}, \sigma] = M_{\text{Pl}}^2 m^2 \int d^4x \sqrt{-g} \left[\mathcal{L}_2(\tilde{K}) + \mathcal{L}_3(\tilde{K}) + \mathcal{L}_4(\tilde{K}) \right] \]

Upgrade to partially constrained vielbein formulation?

\[g^{\text{eff}}_{\mu\nu} = g_{\mu\nu} + 2\beta e^{\sigma/M_{\text{Pl}}} \left[g_{\mu\nu} \left(\sqrt{g^{-1} f} \right)^{\rho} + \beta^2 e^{2\sigma/M_{\text{Pl}}} f_{\mu\nu} \right] \]

• [DeFelice, Gumrukcuoglu, Heisenberg, Mukohyama, Tanahashi, to appear soon]

• Self-accerating de Sitter solution is stable in a range of parameters if \(\beta \) is non-zero