Alberto Nicolis

Columbia University

Icosahedral Inflation

w/ Jonghee Kang
(w/ Solomon Endlich and Junpu Wang, 2012)

Inflation: usual story

- The early universe: homogeneous and isotropic
- Usually modeled via $\varphi_{a}=\varphi_{a}(t)$
- Time-translations spontaneously broken
\Rightarrow Goldstone excitation = adiabatic perturbations
- Systematic effective field theory
(Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)

Solid inflation

- t-independent, x-dependent fields: $\varphi_{a}=\varphi_{a}(\vec{x})$
- time-translations unbroken
- spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy
2. the need for a physical "clock"

Solid inflation

- t-independent, x-dependent fields: $\varphi_{a}=\varphi_{a}(\vec{x})$
- time-translations unbroken
- spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy $\longrightarrow \begin{gathered}\text { internal } \\ \text { symmetries }\end{gathered}$
2. the need for a physical "clock"

Solid inflation

- t-independent, x-dependent fields: $\varphi_{a}=\varphi_{a}(\vec{x})$
- time-translations unbroken
- spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy $\longrightarrow \begin{gathered}\text { internal } \\ \text { symmetries }\end{gathered}$
2. the need for a physical "clock" \longrightarrow gravity

Homogeneity and isotropy

- Ex: one scalar w/vev $\langle\varphi\rangle=x$
- If it has a shift symmetry $\varphi \rightarrow \varphi+a$
- unbroken diagonal translation

$$
\left\{\begin{array}{l}
x \rightarrow x-a \\
\varphi \rightarrow \varphi+a
\end{array}\right.
$$

Rotations still broken

Homogeneity and isotropy

- Ex: one scalar $w / \operatorname{vev}\langle\varphi\rangle=x$
- If it has a shift symmetry $\varphi \rightarrow \varphi+a$
- unbroken diagonal translation

$$
\left\{\begin{array}{l}
x \rightarrow x-a \\
\varphi \rightarrow \varphi+a
\end{array}\right.
$$

Rotations still broken

need 3 fields

3 scalars: $\quad \phi^{I}(\vec{x}, t) \quad I=1,2,3$
vevs:

$$
\left\langle\phi^{I}\right\rangle=x^{I}
$$

If internal symmetries:

$$
\begin{aligned}
& \phi^{I} \rightarrow \phi^{I}+a^{I} \\
& \phi^{I} \rightarrow S O(3) \phi^{I}
\end{aligned}
$$

then unbroken diagonal subgroups

$$
\begin{array}{ll}
3 \text { scalars: } & \phi^{I}(\vec{x}, t) \quad I=1,2,3 \\
\text { vevs: } & \left\langle\phi^{I}\right\rangle=x^{I}
\end{array}
$$

If internal symmetries:

$$
\begin{aligned}
& \phi^{I} \rightarrow \phi^{I}+a^{I} \\
& \phi^{I} \rightarrow S O(3) \phi^{I}
\end{aligned}
$$

then unbroken diagonal subgroups

This is a solid

EFT for solids (and fluids)
Dof: volume elements' positions

$$
\phi^{I}(\vec{x}, t) \quad I=1,2,3
$$

EFT for solids (and fluids)
Dof: volume elements' positions

$$
\phi^{I}(\vec{x}, t) \quad I=1,2,3
$$

Symmetries: Poincaré + internal

$$
\left.\begin{array}{l}
\phi^{I} \rightarrow \phi^{I}+a^{I} \\
\phi^{I} \rightarrow S O(3) \phi^{I}
\end{array}\right\} \text { recover homogeneity/isotropy }
$$

Action

$$
\begin{aligned}
B^{I J} \equiv & \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J} \\
\mathcal{L}= & =F\left([B], \frac{\left[B^{2}\right]}{[B]^{2}}, \frac{\left[B^{3}\right]}{[B]^{3}}\right)+\ldots \quad[\ldots]=\operatorname{Tr}(\ldots) \\
& \underset{(X, Y, Z)}{\uparrow}
\end{aligned}
$$

(For the fluid $\mathcal{L}=F(\operatorname{det} B)+\ldots$)
(Dubovsky, Gregoire, Nicolis, Rattazzi 2006)
(Son 2005)

Stress-energy tensor

$$
T_{\mu \nu} \sim\left(F, F^{\prime}\right) \times\left(g_{\mu \nu}, \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}\right) \times\left(\delta^{I J}, B^{I J}, B^{I K} B^{K J}\right)
$$

On the background $\quad B^{I J}=\delta^{I J}$

$$
T_{\mu \nu} \rightarrow\left\{\begin{array}{l}
\rho=-F \\
\rho+p=-2 X F_{X}
\end{array}\right.
$$

inflation ("slow roll") \longrightarrow small $F_{X}=\mathcal{O}(\epsilon)$
Approximate internal scale invariance

$$
\phi^{I} \rightarrow \lambda \phi^{I}
$$

The "clock"

$$
\begin{aligned}
& B^{I J} \equiv g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J} \rightarrow \frac{1}{a^{2}(t)} \delta^{I J} \\
& X \rightarrow 1 / a^{6} \\
& Y, Z \rightarrow 1
\end{aligned}
$$

time-dependence from the metric
\longrightarrow no associated Goldstone boson
(no equivalence theorem-like limit)

Reheating = Melting

- Solid/fluid transition at some critical $\operatorname{det}(\mathrm{B})$ (or $\operatorname{Tr}(\mathrm{B})$, or ...)
- Similar to solid He at OK and 25bar (30\% compressible, we need e^ 60 ...)
- Fluid: same dof, more symmetries
- Sharp feature in $F(X, Y, Z)$-- region of enhanced symmetry in X, Y, Z space.

Cosmological perturbations

$$
\begin{aligned}
& \phi^{I}=x^{I}+\pi^{I} \\
& g_{\mu \nu}=g_{\mu \nu}^{\mathrm{FRW}}+\delta g_{\mu \nu}
\end{aligned}
$$

U.G.: $\quad F\left(B^{I J}\right) \rightarrow F\left(g^{I J}\right)$

Lorentz violating massive gravity

Very roughly:

$$
\begin{gathered}
\mathcal{L}_{3} \sim F \cdot(\partial \pi)^{3} \\
\zeta \sim \vec{\nabla} \cdot \vec{\pi} \\
\begin{cases}\langle\zeta \zeta\rangle \sim \frac{1}{\epsilon} \frac{1}{c_{L}^{5}} \frac{H^{2}}{M_{\mathrm{Pl}}^{2}} & \text { (cf. } \left.\frac{1}{\epsilon} \frac{1}{c_{L}} \frac{H^{2}}{M_{\mathrm{Pl}}^{2}}\right) \\
\frac{\mathcal{L}_{3}}{\mathcal{L}_{2}} \sim \frac{1}{\epsilon} \frac{1}{c_{L}^{2}} \zeta & \text { (cf. } \left.\frac{1}{c_{L}^{2}} \zeta\right)\end{cases}
\end{gathered}
$$

Observables

$$
\begin{aligned}
& n_{S}-1=2 \epsilon c_{L}^{2}-\eta-5 s \\
& n_{T}-1=2 \epsilon c_{L}^{2} \quad\left(\text { mass term } \sim c_{T}^{2}\right) \\
& r=16 \epsilon c_{L}^{5}
\end{aligned}
$$

Quadrupolar "squeezed limit"

$$
\langle\zeta \zeta \zeta\rangle \rightarrow f_{N L} \times\langle\zeta \zeta\rangle\langle\zeta \zeta\rangle \times\left(1-3 \cos ^{2} \theta\right)
$$

$f_{N L} \sim \frac{1}{\epsilon} \frac{1}{c_{L}^{2}}$
2\% overlap w/ "local" shape
39% w/ "equilateral"
32% w/ "orthogonal"
(see also Shiraishi et al. 2012, Barnaby et al. 2012, Bartolo et al. 2013)

Anisotropic generalizations

$$
\begin{aligned}
& \phi^{I} \rightarrow \phi^{I}+a^{I} \\
& \phi^{I} \rightarrow S O(弓)^{S} \phi^{I} \\
& \text { discrete rotations }
\end{aligned}
$$

Yet, we want:

- isotropic background
- isotropic scalar spectrum

Background

$$
\begin{aligned}
& T_{00} \\
& T_{i j} \propto \delta_{i j}
\end{aligned}
$$

Discrete subgroup of $\mathrm{SO}(3)$ with isotropic 2-index tensors?
Ex: cubic group

$$
O_{i j}^{(2)}=\hat{x}_{i} \hat{x}_{j}+\hat{y}_{i} \hat{y}_{j}+\hat{z}_{i} \hat{z}_{j}=\delta_{i j}
$$

accidentally isotropic!

Scalar spectrum

$$
\begin{aligned}
& \phi^{I}=x^{I}+\pi^{I} \\
& \mathcal{L}_{2}=O_{i j}^{(2)} \cdot \dot{\pi}_{i} \dot{\pi}_{j}+O_{i j k l}^{(4)} \cdot \partial_{i} \pi_{j} \partial_{k} \pi_{l}
\end{aligned}
$$

Discrete subgroup of SO(3) with isotropic 4-index tensors?
Ex: cubic group

$$
\begin{aligned}
O_{i j k l}^{(4)}= & \delta_{i j} \delta_{k l} \\
& \delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k} \\
& \hat{x}_{i} \hat{x}_{j} \hat{x}_{k} \hat{x}_{l}+(\hat{x} \rightarrow \hat{y}, \hat{z})
\end{aligned}
$$

not isotropic!

Scalar 3-pt function:

$$
\mathcal{L}_{3} \supset O_{i j k l m n}^{(6)} \cdot \partial_{i} \pi_{j} \partial_{k} \pi_{l} \partial_{m} \pi_{n}
$$

Tensor spectrum:

$$
\mathcal{L}_{2}=O_{i j k l}^{(4)} \cdot \dot{\gamma}_{i j} \dot{\gamma}_{k l}+O_{i j k l m n}^{(6)} \cdot \partial_{i} \gamma_{j k} \partial_{l} \gamma_{m n}
$$

Looking for a discrete subgroup of SO(3) w/

- Isotropic $O^{(2)}$
- Isotropic $O^{(4)}$
- Anisotropic $O^{(6)}$

isotropic background, scalar spectrum
anisotropic scalar 3-pt function, tensor spectrum

Only one possibility: icosahedral group

$$
\begin{aligned}
O_{i j}^{(2)}= & \delta_{i j} \\
O_{i j k l}^{(4)}= & \delta_{i j} \delta_{k l} \\
& \delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}
\end{aligned}
$$

$$
O_{i j k l m n}^{(6)}=2(\gamma+2) \delta_{i j k l m n}
$$

$$
+(\gamma+1)\left(\delta_{i j k l} \delta_{m n} \delta_{m, i+1}+\ldots\right)
$$

$$
+\left(\delta_{i j k l} \delta_{m n} \delta_{m, i-1}+\ldots\right)
$$

$$
\gamma=(1+\sqrt{5}) / 2
$$

Scalar 3-pt function

Messy expression - depends on vectors k2, k3
Two independent parameters α, β
Anisotropies $\propto(\beta-9 / 2)$

Overlap with standard shapes

completely anisotropic case

$$
\bar{f}_{\mathrm{NL}}\left(\theta_{2}\right)=-\frac{\alpha}{\epsilon c_{L}^{2}}\left[\frac{19415}{378}(\beta-8)+\frac{104135}{6048}(2 \beta-9) P_{6}\left(\cos \theta_{2}\right)\right]
$$

Tensor spectrum

No anisotropy to lowest-order in derivatives:

$$
\begin{aligned}
F\left(B^{I J}\right)=F\left(g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}\right) & \not{ } \partial \gamma \partial \gamma \\
& \rightarrow O_{i j k l}^{(4)} \cdot \gamma_{i j} \gamma_{k l}
\end{aligned}
$$

Needs higher-derivative couplings - e.g.:

$$
\left(R^{\mu \nu \rho \sigma} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J} \partial_{\rho} \phi^{K} \partial_{\sigma} \phi^{L}\right)^{3} \cdot T_{\text {aniso }}
$$

O(1) anisotropies within EFT
Systematics? in progress...

Conclusions

- Observed isotropy of the universe could be accidental
- Potentially anisotropic non-gaussianity
- Potentially anisotropic tensor modes
- Data?

