Alberto Nicolis Columbia University

Icosahedral Inflation

w/ Jonghee Kang

(w/ Solomon Endlich and Junpu Wang, 2012)

Inflation: usual story

The early universe: homogeneous and isotropic

Sually modeled via $\varphi_a = \varphi_a(t)$

Time-translations spontaneously broken

Goldstone excitation = adiabatic perturbations

Systematic effective field theory

(Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)

Solid inflation

(Endlich, Nicolis, Wang 2012) (Gruzinov 2004)

The total sector of the se

time-translations unbroken

Spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy

2. the need for a physical "clock"

Solid inflation

(Endlich, Nicolis, Wang 2012) (Gruzinov 2004)

 \circ t-independent, x-dependent fields: $\varphi_a = \varphi_a(\vec{x})$

time-translations unbroken

Spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy

internal symmetries

2. the need for a physical "clock"

Solid inflation

(Endlich, Nicolis, Wang 2012) (Gruzinov 2004)

The total sector of the se

time-translations unbroken

Spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy

2. the need for a physical "clock"

internal symmetries

gravity

Homogeneity and isotropy

Ex: one scalar w/ vev $\langle \varphi \rangle = x$ If it has a shift symmetry $\varphi \to \varphi + a$ unbroken diagonal translation $\begin{cases} x \to x - a \\ \varphi \to \varphi + a \end{cases}$

Rotations still broken

Homogeneity and isotropy

 \oslash Ex: one scalar w/ vev $\langle \varphi \rangle = x$ \odot If it has a shift symmetry $\varphi \rightarrow \varphi + a$ Indiagonal translation $\begin{cases} x \to x - a \\ \varphi \to \varphi + a \end{cases}$

Rotations still broken _____ need 3 fields

3 scalars: $\phi^{I}(\vec{x},t)$ I=1,2,3 vevs: $\langle \phi^{I}
angle = x^{I}$

If internal symmetries:

$$\phi^{I} \to \phi^{I} + a^{I}$$
$$\phi^{I} \to SO(3) \phi^{I}$$

then unbroken diagonal subgroups

3 scalars: $\phi^{I}(\vec{x},t)$ I=1,2,3vevs: $\langle \phi^{I}
angle = x^{I}$

If internal symmetries:

$$\phi^{I} \to \phi^{I} + a^{I}$$
$$\phi^{I} \to SO(3) \phi^{I}$$

then unbroken diagonal subgroups

This is a solid

EFT for solids (and fluids) Dof: volume elements' positions $\phi^{I}(\vec{x},t)$ I = 1, 2, 3

Symmetries: Poincaré + internal

$$\phi^{I} \rightarrow \phi^{I} + a^{I}$$

$$\phi^{I} \rightarrow SO(3) \phi^{I}$$

recover homogeneity/isotropy

$$\phi^{I} \to \xi^{I}(\phi) \quad \det \frac{\partial \xi^{I}}{\partial \phi^{J}} = 1 \qquad \text{fluid vs solid}$$

7

 $B^{IJ} \equiv \partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J}$

 $[\ldots] = \operatorname{Tr}(\ldots)$

(For the fluid $\mathcal{L} = F(\det B) + \dots$)

(Dubovsky, Gregoire, Nicolis, Rattazzi 2006) (Son 2005)

Stress-energy tensor

 $T_{\mu\nu} \sim (F, F') \times (g_{\mu\nu}, \partial_{\mu}\phi^{I}\partial_{\nu}\phi^{J}) \times (\delta^{IJ}, B^{IJ}, B^{IK}B^{KJ})$

On the background $B^{IJ} = \delta^{IJ}$

$$T_{\mu\nu} \to \begin{cases} \rho = -F \\ \rho + p = -2 \, X F_X \end{cases}$$

inflation ("slow roll") small $F_X = \mathcal{O}(\epsilon)$

Approximate internal scale invariance

 $\phi^I o \lambda \phi^I$

$$B^{IJ} \equiv g^{\mu\nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J} \to \frac{1}{a^{2}(t)} \delta^{IJ}$$

 $\begin{array}{c} X \to 1/a^6 \\ Y, Z \to 1 \end{array}$

time-dependence from the metric

no associated Goldstone boson

(no equivalence theorem-like limit)

Reheating = Melting

 Solid/fluid transition at some critical det(B) (or Tr(B), or ...)

Similar to solid He at OK and 25bar (30% compressible, we need e⁶⁰...)

Fluid: same dof, more symmetries

Sharp feature in F(X, Y, Z) -- region of enhanced symmetry in X, Y, Z space.

Cosmological perturbations

$$\phi^{I} = x^{I} + \pi^{I}$$
$$g_{\mu\nu} = g^{\text{FRW}}_{\mu\nu} + \delta g_{\mu\nu}$$

U.G.: $F(B^{IJ}) \to F(g^{IJ})$

Lorentz violating massive gravity

Very roughly:

 $\mathcal{L}_2 \sim F_X \cdot (\partial \pi)^2$ $\mathcal{L}_3 \sim F \cdot (\partial \pi)^3$ $\zeta \sim \vec{\nabla} \cdot \vec{\pi}$

$$\left\{ \begin{array}{l} \langle \zeta \zeta \rangle \sim \frac{1}{\epsilon} \frac{1}{c_L^5} \frac{H^2}{M_{\rm Pl}^2} \\ \frac{\mathcal{L}_3}{\mathcal{L}_2} \sim \frac{1}{\epsilon} \frac{1}{c_L^2} \zeta \end{array} \right.$$

(cf. $\frac{1}{\epsilon} \frac{1}{c_L} \frac{H^2}{M_{\rm Pl}^2}$)

(cf. $rac{1}{c_L^2}\zeta$)

Observables

 $n_S-1=2\epsilon \, c_L^2-\eta-5s$ $n_T-1=2\epsilon \, c_L^2$ (mass term $\sim c_T^2$) $r=16\,\epsilon c_L^5$

Quadrupolar "squeezed limit"

 $\langle \zeta \zeta \zeta \rangle \to f_{NL} \times \langle \zeta \zeta \rangle \langle \zeta \zeta \rangle \times (1 - 3\cos^2 \theta)$

 $f_{NL} \sim \frac{1}{\epsilon} \frac{1}{c_L^2}$

2% overlap w/ "local" shape 39% w/ "equilateral" 32% w/ "orthogonal"

> (see also Shiraishi et al. 2012, Barnaby et al. 2012, Bartolo et al. 2013)

Anisotropic generalizations

 $\phi^{I} \to \phi^{I} + a^{I}$ $\phi^{I} \to SO(3) \phi^{I}$

discrete rotations

Yet, we want:

isotropic background

isotropic scalar spectrum

Background

 T_{00} $T_{ij} \propto \delta_{ij}$

Discrete subgroup of SO(3) with isotropic 2-index tensors? Ex: cubic group

$$O_{ij}^{(2)} = \hat{x}_i \hat{x}_j + \hat{y}_i \hat{y}_j + \hat{z}_i \hat{z}_j = \delta_{ij}$$

accidentally isotropic!

Scalar spectrum

$$\phi^I = x^I + \pi^I$$

$$\mathcal{L}_2 = O_{ij}^{(2)} \cdot \dot{\pi}_i \dot{\pi}_j + O_{ijkl}^{(4)} \cdot \partial_i \pi_j \partial_k \pi_l$$

Discrete subgroup of SO(3) with isotropic 4-index tensors? Ex: cubic group

 $O_{ijkl}^{(4)} = \delta_{ij}\delta_{kl}$ $\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}$ $\hat{x}_i\hat{x}_j\hat{x}_k\hat{x}_l + (\hat{x} \to \hat{y}, \hat{z})$

not isotropic!

Scalar 3-pt function:

$$\mathcal{L}_3 \supset O_{ijklmn}^{(6)} \cdot \partial_i \pi_j \,\partial_k \pi_l \,\partial_m \pi_n$$

Tensor spectrum:

$$\mathcal{L}_2 = O_{ijkl}^{(4)} \cdot \dot{\gamma}_{ij} \, \dot{\gamma}_{kl} + O_{ijklmn}^{(6)} \cdot \partial_i \gamma_{jk} \, \partial_l \gamma_{mn}$$

Looking for a discrete subgroup of SO(3) w/

 \odot Isotropic $O^{(2)}$

 \odot Isotropic $O^{(4)}$

Anisotropic $O^{(6)}$

isotropic background, scalar spectrum anisotropic scalar 3-pt function, tensor spectrum

Only one possibility: icosahedral group

 $O_{ij}^{(2)} = \delta_{ij}$ $O_{ijkl}^{(4)} = \delta_{ij}\delta_{kl}$ $\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}$

 $O_{ijklmn}^{(6)} = 2(\gamma + 2)\delta_{ijklmn}$ $+ (\gamma + 1)(\delta_{ijkl}\delta_{mn}\delta_{m,i+1} + \dots)$ $+ (\delta_{ijkl}\delta_{mn}\delta_{m,i-1} + \dots)$

 $\gamma = (1 + \sqrt{5})/2$

Scalar 3-pt function

Messy expression – depends on vectors k2, k3 Two independent parameters α, β Anisotropies $\propto (\beta - 9/2)$

Overlap with standard shapes

 $\propto (eta - 8)$

 $\beta = 8$ completely anisotropic case

 $\bar{f}_{\rm NL}(\theta_2) = -\frac{\alpha}{\epsilon c_L^2} \Big[\frac{19415}{378} (\beta - 8) + \frac{104135}{6048} (2\beta - 9) P_6(\cos \theta_2) \Big]$

Tensor spectrum

No anisotropy to lowest-order in derivatives:

 $F(B^{IJ}) = F(g^{\mu\nu}\partial_{\mu}\phi^{I}\partial_{\nu}\phi^{J}) \quad \not \rightarrow \quad \partial\gamma\partial\gamma$ $\rightarrow \quad O^{(4)}_{ijkl} \cdot \gamma_{ij} \gamma_{kl}$

Needs higher-derivative couplings – e.g.: $(R^{\mu\nu\rho\sigma}\partial_{\mu}\phi^{I}\partial_{\nu}\phi^{J}\partial_{\rho}\phi^{K}\partial_{\sigma}\phi^{L})^{3} \cdot T_{aniso}$

O(1) anisotropies within EFT

Systematics? in progress...

Observed isotropy of the universe could be accidental

Potentially anisotropic non-gaussianity

Potentially anisotropic tensor modes

Data?