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The early universe: homogeneous and 
isotropic


Usually modeled via


Time-translations spontaneously broken


Systematic effective field theory

'a = 'a(t)

Goldstone excitation = adiabatic perturbations

(Creminelli, Luty, Nicolis, Senatore 2006

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)
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Inflation: usual story



t-independent, x-dependent fields:


time-translations unbroken


spatial translations and rotations, broken

3

Solid inflation

�a = �a(⇥x)

Apparently violates:

1. homogeneity and isotropy


2. the need for a physical “clock”

(Endlich, Nicolis, Wang 2012)
(Gruzinov 2004)
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t-independent, x-dependent fields:


time-translations unbroken


spatial translations and rotations, broken

3

Solid inflation

�a = �a(⇥x)

Apparently violates:

1. homogeneity and isotropy


2. the need for a physical “clock”

internal

symmetries

gravity

(Endlich, Nicolis, Wang 2012)
(Gruzinov 2004)



Ex: one scalar w/ vev 


If it has a shift symmetry


unbroken diagonal translation 
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Homogeneity  and isotropy

h�i = x

� ! �+ a

� ! �+ a
x ! x� a

}

Rotations still broken



Ex: one scalar w/ vev 


If it has a shift symmetry


unbroken diagonal translation 

4

Homogeneity  and isotropy

h�i = x

� ! �+ a

� ! �+ a
x ! x� a

}

Rotations still broken need 3 fields
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I = 1, 2, 3�I(⇧x, t)3 scalars:

vevs: h�Ii = xI

If internal symmetries:

�I � SO(3) �I
�I � �I + aI

then unbroken diagonal subgroups
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I = 1, 2, 3�I(⇧x, t)3 scalars:

vevs: h�Ii = xI

If internal symmetries:

�I � SO(3) �I
�I � �I + aI

then unbroken diagonal subgroups

This is a solid



Dof:   volume elements’ positions

I = 1, 2, 3�I(⇧x, t)
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EFT for solids (and fluids)



Dof:   volume elements’ positions

I = 1, 2, 3�I(⇧x, t)

6

EFT for solids (and fluids)

h�Iieq = x

I



Symmetries:   Poincaré + internal

�I � �I + aI

�I � SO(3) �I

⇥I � �I(⇥) det
⇤�I

⇤⇥J
= 1

7

} recover homogeneity/isotropy

fluid vs solid
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Action

BIJ ⌘ ⇥µ�
I⇥µ�J

L = F
⇣
[B],

[B2]

[B]2
,
[B3]

[B]3

⌘
+ . . .

(For the fluid                           )L = F
�
detB

�
+ . . .

(X,Y, Z)

[. . . ] = Tr(. . . )

(Dubovsky, Gregoire, Nicolis, Rattazzi 2006)
(Son 2005)
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Stress-energy tensor

On the background BIJ = �IJ

inflation (“slow roll”) small

Approximate internal 
scale invariance �I ! ��I

FX = O(�)

Tµ⌫ ⇠ (F, F 0)⇥ (gµ⌫ , @µ�
I@⌫�

J)⇥ (�IJ , BIJ , BIKBKJ)

Tµ⌫ !
⇢

⇢ = �F
⇢+ p = �2XFX
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The “clock”

BIJ ⌘ gµ�⇤µ⇥
I⇤�⇥

J ! 1

a2(t)
�IJ

X ! 1/a6

Y, Z ! 1

time-dependence from the metric

no associated Goldstone boson

(no equivalence theorem-like limit)
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Reheating = Melting

Solid/fluid transition at some critical det(B) 
(or Tr(B), or ...)


Similar to solid He at 0K and 25bar (30% 
compressible, we need e^60...)


Fluid: same dof, more symmetries


Sharp feature in F(X, Y, Z) -- region of 
enhanced symmetry in X, Y, Z space. 
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Cosmological perturbations

⇥I = xI + �I

gµ� = gFRWµ� + �gµ�

Very roughly: L2 � FX · (⇥�)2

L3 � F · (⇥�)3

⇣ � ~⇥ · ~⇡

h⇥⇥i ⇠ 1

�

1

c5L

H2

M2
Pl

(cf.             )
1

�

1

cL

H2

M2
Pl

L3

L2
� 1

�

1

c2L
⇥ (cf.       )1

c2L
�

⇢

F (BIJ) ! F (gIJ)

Lorentz violating

massive gravity

U.G.:
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Observables
nS � 1 = 2� c2L � ⇥ � 5s

(mass term        )⇠ c2TnT � 1 = 2� c2L

h⇣⇣⇣i /

r = 16 ✏c5L
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Quadrupolar “squeezed limit”

fNL ⇠ 1

�

1

c2L

2% overlap w/ “local” shape
39% w/ “equilateral”

h���i ! fNL ⇥ h��ih��i ⇥ (1� 3 cos

2 ⇥)

32% w/ “orthogonal”

(see also Shiraishi et al. 2012, Barnaby 
et al. 2012, Bartolo et al. 2013)
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Anisotropic generalizations

�I � SO(3) �I
�I � �I + aI

discrete rotations

Yet, we want:

isotropic background


isotropic scalar spectrum
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Background

T00

Tij / �ij

Discrete subgroup of SO(3) with isotropic 2-index tensors? 

Ex: cubic group

x̂

ŷ

ẑ O
(2)
ij = x̂ix̂j + ŷiŷj + ẑiẑj = �ij

accidentally isotropic!



18

Scalar spectrum

⇥I = xI + �I

L2 = O
(2)
ij · ⇡̇i⇡̇j +O

(4)
ijkl · @i⇡j@k⇡l

Discrete subgroup of SO(3) with isotropic 4-index tensors? 

Ex: cubic group

x̂

ŷ

ẑ
O

(4)
ijkl = �ij�kl

�ik�jl + �il�jk

x̂ix̂j x̂kx̂l + (x̂ ! ŷ, ẑ)

not isotropic!
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Scalar 3-pt function:

L3 � O
(6)
ijklmn · @i⇡j @k⇡l @m⇡n

Tensor spectrum:

L2 = O
(4)
ijkl · �̇ij �̇kl +O

(6)
ijklmn · @i�jk @l�mn
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Looking for a discrete subgroup of SO(3) w/

Isotropic 


Isotropic


Anisotropic

O(2)

O(4)

O(6)

{ isotropic background, scalar spectrum

anisotropic scalar 3-pt function,

tensor spectrum
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Only one possibility: icosahedral group

O
(2)
ij = �ij

O
(4)
ijkl = �ij�kl

�ik�jl + �il�jk

O
(6)
ijklmn = 2(� + 2)�ijklmn

+ (� + 1)(�ijkl�mn�m,i+1 + . . . )

+ (�ijkl�mn�m,i�1 + . . . )

� = (1 +
p
5)/2
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Scalar 3-pt function
Messy expression — depends on vectors k2, k3

Anisotropies
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Figure 2: The coordinate system defined in the text. The ẑ, ẑ0 = ˆk
2

, and x̂0 axes all lie in the same

plane.

Following the standard conventions for correlation functions of the Newtonian potential
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we define f
NL

using equilateral configurations:

f(~k
1

,~k
2

,~k
3

)
�

�

equil

= f
NL

6�2

�

k6

1

. (5.9)

However, the equilateral-triangle condition only fixes the relative angle ✓
3

, and so in our case
the resulting f

NL

depends non-trivially on the other angles, �
2

, �
3

, and ✓
2

. To get a readable
expression, we average f

NL
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2

and �
3

,
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The remaining dependence on ✓
2

will still be a measure of anisotropy. For our three-point
function, we get:
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Overlap with 
standard shapes

Two independent parameters ↵,�

/ (� � 9/2)

/ (� � 8)

� = 8 completely 
anisotropic case
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Tensor spectrum

No anisotropy to lowest-order in derivatives:

F (BIJ) = F (gµ⌫@µ�
I@⌫�

J) ! @�@�

! O
(4)
ijkl · �ij �kl

Needs higher-derivative couplings — e.g.:

Systematics? in progress…

(Rµ⌫⇢�@µ�
I@⌫�

J@⇢�
K@��

L)3 · T
aniso

O(1) anisotropies within EFT

6 Anisotropic tensor spectrum?

The existence of an anisotropic six-index invariant tensor suggests that anisotropies can
also show up in the tensor modes’ two-point function, because of the possible quadratic
Lagrangian term

T ijklmn
aniso

@i�jk @l�mn . (6.1)

However, it is easy to convince oneself that such a term cannot arise from expanding the
lowest-derivative action we have been working with so far,

S =

Z

d4x
p�g

⇥

1

2

M2

p

R + F (BIJ)
⇤

, (6.2)

simply because all possible anisotropies are in the structure of F , but its argument BIJ =
gµ⌫@µ�I@�J does not involve derivatives of the metric.

On the other hand, in the presence of higher derivative terms, one will generically get
such a term. Consider for instance the invariant

(g · · · g)µ1⌫1···µ6⌫6 ·rµ1r⌫1�
I1 · · ·rµ6r⌫6�

I6 · T I1···I6
aniso

, (6.3)

where (g · · · g) stands schematically for any twelve-index tensor built out of the metric. Setting
the �I ’s to their background values xI , and expanding in powers of the tensor modes �, the
covariant derivatives rr�I have the schematic form

rr�I ⇠ H + @� ; (6.4)

and so, upon taking all the contractions in (6.3), one does expect to find the term (6.1) at
quadratic order. Similar considerations apply to higher-derivative terms that involve higher
powers of curvature tensors, for instance a trilinear term schematically of the form

(Rµ⌫⇢� @µ�
I@⌫�

J@⇢�
K@��

L)3 , (6.5)

with suitable contractions with our anisotropic invariant tensor T I1···I6
aniso

. (We need at least
three Riemann tensors, because our T

aniso

is totally symmetric, while Rµ⌫⇢� has antisymmetry
properties as well.)

However, if we want the anisotropic quadratic terms that we get from these higher
derivative corrections to compete with the purely isotropic ones we get from the Einstein-
Hilbert action, we need to give the higher derivative corrections a large coe�cient, of order
M2

p

/H4 in the examples above. This makes the smallness of F ,

F ⇠ H2M2

p

⌧ M4

p

, (6.6)

potentially unstable against quantum corrections. For instance, we expect graviton loops
involving �’s on the external legs and the coupling (6.5) in the vertices, to drastically correct
F (BIJ). A quick order-of-magnitude estimate of this two-loop diagram
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Observed isotropy of the universe could be 
accidental


Potentially anisotropic non-gaussianity


Potentially anisotropic tensor modes


Data?
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Conclusions


