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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?
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Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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3 Dark Energy

...

• Cosmic acceleration and screening mechanisms:

Possible realizations of screening mechanisms:

– Extradimensions, brane-world scenarios

– Break symmetries (massive gravity): new dofs are ‘longitudinal polarizations’

Realize Galileons as Goldstones of broken symmetries

– Put by hand

put figure
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Embedding Galileons in a more fundamental set-up

Given these considerations, is it possible to embed Galileons in some larger set-up?

. Consistency conditions (absence of ghosts, new symmetries) impose con-
straints on the structure of the theory: This reduces parameter space

. Prescription for coupling with matter or extra fields

. Suggest new ways to test the theory, or cure theoretical issues

What one can look for:

. Galileons are not put by hand, but arise in well motivated particle physics
set-ups.

. Goldstone bosons of broken symmetries?

First example: dRGT massive gravity

• GR propagates 2 d.o.f.s. Massive gravity propagates 5 (2+2+1).

• In a suitable decoupling limit, the scalar graviton polarization acquires
(restricted) Galileon self-interactions

• Challenging to investigate cosmological dynamics

Second (simpler) example:

Vectors breaking abelian symmetry

Longitudinal polarization of vector mediates dark energy

• Vectors have been important in the history of modifications of GR, since the
early days (Kaluza-Klein, Einstein-Aether, TeVeS)

• Vectors are able to mediate long range forces: think to electromagnetism!

• A small mass mA or small vector couplings can be technically natural.

Task: build vector theory that is ghost-free and interesting

[GT, Heisenberg]
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• Consistent set-up breaking gauge symmetry with derivative vector interac-
tions

. In appropriate decoupling limit, Goldstone boson has Galileon self-
interactions

. The symmetry can be spontaneously broken by Higgs mechanism

Simple embedding of Galileons in particle physics motivated scenario

• Interesting phenomenology

. Screening mechanism

. Consistent vector model for dark energy?

(see e.g. [Goon et al])
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3 Dark Energy

...

• Possible realizations:

– Extradimensions, brane-world scenarios

– Break symmetries (massive gravity): new dofs are ‘longitudinal polarizations’

Realize Galileons as Goldstones of broken symmetries

– Put by hand

put figure
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4 What’s the role of vector fields for modified gravity ?

I Vectors play role in di↵erent scenarios

– Original Kaluza-Klein idea: get electromagnetism from 5d Einstein gravity

– Brane-world models: DBI action contains world-volume vector fields

I Recent scenarios: TeVeS, Einstein Ether etc

I Massive gravity: decoupling limit around flat space has dynamical vector modes.

Goldstone modes of broken di↵eo invariance

I Vector dofs are often neglected

– Sake of simplicity (scalar-tensor theories are already complicated enough)

– They don’t couple to sources

– They appear at least quadratically in the action

I But they can have cosmological consequences in modified gravity

Strongly coupled around self-accelerating solutions in massive gravity

I Vector Horndeski is remarably simple:

Most general theory with gauge symmetry, coupling vector to gravity, and leading to

second order eqs of motion

�L =
p
�g ✏µ1µ2µ3µ4✏⌫1⌫2⌫3⌫4Fµ1µ2F

⌫1⌫2R ⌫3⌫4
µ3µ4

(4.1)
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5 Galileons from broken gauge invariance

U(1) vector gauge theory: break symmetry through interactions containing derivatives

L = �1

4
Fµ⌫F

µ⌫ + symmetry breaking part

+
Can interactions of the vector longitudinal mode lead to Galileon set-up ?

Galileons are interesting for

• Acceleration of the universe

• Screening e↵ects

• Non-renormalization theorems

,
Task

Realise Galileons as ‘Goldstone bosons’ of broken gauge symmetry

(in appropriate decoupling limit)
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]
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5 Galileons from broken gauge invariance

U(1) vector gauge theory: break symmetry through interactions containing derivatives

L = �1

4
Fµ⌫F

µ⌫ + symmetry breaking part

+
Can interactions of the vector longitudinal mode lead to Galileon set-up ?

Galileons are interesting for

• Acceleration of the universe

• Screening e↵ects

• Non-renormalization theorems

,
Task

Realise Galileons as ‘Goldstone bosons’ of broken gauge symmetry

(in appropriate decoupling limit)
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Embedding Galileons in a more fundamental set-up

Given these considerations, is it possible to embed Galileons in some larger set-up?

. Consistency conditions (absence of ghosts, new symmetries) impose con-
straints on the structure of the theory: This reduces parameter space

. Prescription for coupling with matter or extra fields

. Suggest new ways to test the theory, or cure theoretical issues

What one can look for:

. Galileons are not put by hand, but arise in well motivated particle physics
set-ups.

. Goldstone bosons of broken symmetries?

First example: dRGT massive gravity

• GR propagates 2 d.o.f.s. Massive gravity propagates 5 (2+2+1).

• In a suitable decoupling limit, the scalar graviton polarization acquires
(restricted) Galileon self-interactions

• Challenging to investigate cosmological dynamics

Second (simpler) example:

Vectors breaking abelian symmetry

Longitudinal polarization of vector mediates dark energy

• Vectors have been important in the history of modifications of GR, since the
early days (Kaluza-Klein, Einstein-Aether, TeVeS)

• Vectors are able to mediate long range forces: think to electromagnetism!

• A small mass mA or small vector couplings can be technically natural.

Task: build vector theory that is ghost-free and interesting

[GT, Heisenberg]
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4• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 keeps a non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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6 Vector Galileons

Vector Aµ = (A0, Ai) with Ai = AT
i + @i⇡

Criteria to follow

- A0 vector component is not dynamical (no ghost)

- The vector longitudinal polarization is dynamical instead

- Decoupling limit give Galileon selfinteractions for ⇡

m ! 0 , � ! 0 ,
m3

�
= ⇤3 = finite

Motivations

I Relation with Galileons: possibly share some of the nice features mentioned above

I Galileons from broken symmetries : analogy with massive gravity.

– dRGT massive gravity: consider the theory in decoupling limit

m ! 0 , MP l ! 1 , m2MP l = ⇤3 = finite

Goldstone modes acquire galileonic interactions

– Opportunity to understand (some of) its features in a simpler set-up

I Moreover

- Easier to study dynamics of perturbations around cosmological space-times,

outside decoupling limit

- Higgs mechanism: spontaneous symmetry breaking leads to vector galileons

– 7 –
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3

the vector as

L(0) = −m2AµA
µ , (2)

L(1) = −β2 AµA
µ (∂ρA

ρ) , (3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρ A
σ∂ρAσ) + 3 (∂µA

µ) (∂ρ A
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρ A
µ − 3 ∂µ A

ν ∂ν A
ρ ∂µ Aρ

]

, (5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a mass,
while the βi are dimensionless couplings. The suffix (i) in the Lagrangians indicates the number
of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)

• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance
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Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups
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and acquires Galileon interactions in a decoupling limit.
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• Don’t introduce ghosts: the time-component A0 keeps a non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!
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6 Vector Galileons

Vector Aµ = (A0, Ai) with Ai = AT
i + @i⇡

Criteria to follow

- A0 vector component is not dynamical (no ghost)

- The vector longitudinal polarization is dynamical instead

- Decoupling limit give Galileon selfinteractions for ⇡

m ! 0 , � ! 0 ,
m3

�
= ⇤3 = finite

Motivations

I Relation with Galileons: possibly share some of the nice features mentioned above

I Galileons from broken symmetries : analogy with massive gravity.

– dRGT massive gravity: consider the theory in decoupling limit

m ! 0 , MP l ! 1 , m2MP l = ⇤3 = finite

Goldstone modes acquire galileonic interactions

– Opportunity to understand (some of) its features in a simpler set-up

I Moreover

- Easier to study dynamics of perturbations around cosmological space-times,

outside decoupling limit

- Higgs mechanism: spontaneous symmetry breaking leads to vector galileons
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Modified electromagnetism

• Gravity is not the only observed long range force.

Electromagnetic force is also long range!

Electromagnetic force mediated by spin 1 vector Aµ = (A0, A1, A2, A3)

metti figura cmb

Question: How to modify EM so to find connection with Galileons?

• Renounce to Abelian gauge invariance:

metti figura cmb

– Gauge symmetry: 2 transverse polarizations (2 dof)

– No gauge symmetry: 2 transverse + 1 longitudinal (3 dof)

⇥ Add dynamics to longitudinal polarization �: Ai = AT
i + ⌅i �

⇥ But do it without introducing ghosts ! I.e. do not excite the ‘fourth’ mode

• The minimal interesting Lagrangians with derivative self-couplings are
(gravity added later)

• Nice theoretical features

⇥ EOM for time-component A0 is constraint: no ghost!

⇥ In decoupling limit the longitudinal polarization is controlled by Galileons.
Galileon and Abelian symmetries are recovered!

Decoupling limit (different from massive gravity)

You get plenty of symmetries that protect the theory!

Question: Before starting to talk about cosmology, isn’t all this ruled out by
. precision measurements?

Not in an obvious way

⇥ Current constraints on photon mass: m� ⇤ 10�19eV .
Tiny, but technically natural: protected by gauge symmetry.

⇥ Non-linear self interactions might lead to strong coupling e�ects screening
the longitudinal polarization

(Analogue of Vainshtein mechanism)

⇥ Example: Electric field produced by point charge

metti figura point charge

5

3

the vector as

L(0) = −m2AµA
µ , (2)

L(1) = −β2 AµA
µ (∂ρA

ρ) , (3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρ A
σ∂ρAσ) + 3 (∂µA

µ) (∂ρ A
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρ A
µ − 3 ∂µ A

ν ∂ν A
ρ ∂µ Aρ

]

, (5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a mass,
while the βi are dimensionless couplings. The suffix (i) in the Lagrangians indicates the number
of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)

� Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r
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5

to the ‘strong coupling’ scale at which the argument in the square root in eq. (15) becomes
appreciably different than one: this scale is given by

rs ≡
√
β

m
. (18)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The regime
rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in eq (13) can be
neglected, as well as the mass term, and the power-law configurations A0 ∼ 1/r, χ ∼ r2s/r

2 are
solutions for the equations of motion. It is an intermediate regime in which, although χ acquires
a non-trivial profile due to the non-linear interactions weighted by β, its effect is too weak to
appreciably influence the configuration for A0. It would be interesting to numerically investigate
the full strong coupling regime r ≪ rs, in particular to understand whether interesting screening
effects on this vector set-up appear, similarly to what happens for the gravitational Vainsthein
effect [17].

B. Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing that the
non-linear equations (11-12) preserve a (spatial) Galileon symmetry in the longitudinal polarization,
χ → χ+ a + bixi, and Galileon systems are known to exhibit a screening Vainshtein mechanism
[2] in gravitational set-ups. Indeed, our motivation for presenting the non-linear coupled equations
sourced by a static charge was precisely to point out this fact. We now investigate in more detail
how the vector Lagrangian (7) is connected with Galileons. We adopt the Stückelberg formalism,
trading everywhere Aµ for Aµ + 1/

(√
2m

)

∂µφ: the resulting Lagrangian is invariant under the

gauge symmetry Aµ → Aµ−∂µξ, φ → φ+
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders clearer
the interactions among the different degrees of freedom. The total Lagrangian reads, assuming
m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ

)

. (19)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (20)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (21)

The result of taking such a decoupling limit is a theory with two different symmetries 1: a
free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon scalar
Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.
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with ∇⃗2 ≡ δij∂i∂j . The main difference with respect to the gauge invariant (and Proca) cases
is that the β contribution renders the A0 equation dependent on the quantity ∂iAi. Taking the
divergence of eq (9), we find

2m2 ∂iAi = −β∇2 A2
0 − 2β (∂iAi ∂jAj − ∂iAj ∂jAi) . (10)

In looking for a static field configuration, we separate the spatial vector components in transverse
and longitudinal parts, Ai = AT

i + ∂i χ with ∂iAT
i = 0. We focus here on a simplifying Ansatz

setting to zero the transverse polarizations AT
i = 0. Hence we end up with the coupled equations

for A0 and χ

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∇⃗2χ , (11)

∇⃗2χ = −
β

2m2
∇⃗2A2

0 −
β

2m2

[

(

∇⃗2 χ
)2

− (∂i∂j χ)
2
]

. (12)

Notice that, although the longitudinal polarization χ is not directly coupled to the source, never-
theless it ‘feels’ it via the non-linear term in eq. (11). Let us make the further simplifying Ansatz
of spherical symmetry, where all the functions depend only on the distance r from the origin, and
the previous two equations (11-12), after some manipulations, read

−
d

dr

(

r2A′
0

)

= r2 ρ− 2m2 r2A0 + 2β A0
d

dr

(

r2χ′) , (13)

χ′ =
2β

m2

χ′2

r
+

βA0A′
0

m2
, (14)

where a prime indicates derivative along r. Eq. (14) is a second order algebraic equation for χ′,
whose solution provides a relation between χ and A0 (we focus only on the branch that decays for
large values of r):

χ′ =
m2 r

4β

(

1−

√

1−
8β2 A0A′

0

m4 r

)

. (15)

This relation can be substituted in eq (13) to obtain a non-linear differential equation that govern
the behavior of the ‘electric field’ produced by the source. At large distances from the source,
where A0 is small, eq. (15) can be expressed as

χ′ ≃
β

m2
A0A

′
0

and one finds that both A0 and χ acquire a Yukawa-like suppression (we normalize to unity the
charge of the source):

A0 ≃
e−

√
2mr

r
, (16)

χ ≃
β e−2

√
2mr

2m2 r2
. (17)

Notice that χ decays more rapidly than A0. We call rm ≡ 1/
(√

2m
)

the distance at which the
Yukawa-like behavior due to the vector mass becomes important in determining the profile for A0:
well below this radius, the solution for the vector potential, eq (16), can be approximated by a
power-law. In this regime r ≪ rm, one can identify another characteristic distance, corresponding

� Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r

Safe regime
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Modified electromagnetism

• Gravity is not the only observed long range force.

Electromagnetic force is also long range!

Electromagnetic force mediated by spin 1 vector Aµ = (A0, A1, A2, A3)

metti figura cmb

Question: How to modify EM so to find connection with Galileons?

• Renounce to Abelian gauge invariance:

metti figura cmb

– Gauge symmetry: 2 transverse polarizations (2 dof)

– No gauge symmetry: 2 transverse + 1 longitudinal (3 dof)

⇥ Add dynamics to longitudinal polarization �: Ai = AT
i + ⌅i �

⇥ But do it without introducing ghosts ! I.e. do not excite the ‘fourth’ mode

• The minimal interesting Lagrangians with derivative self-couplings are
(gravity added later)

• Nice theoretical features

⇥ EOM for time-component A0 is constraint: no ghost!

⇥ In decoupling limit the longitudinal polarization is controlled by Galileons.
Galileon and Abelian symmetries are recovered!

Decoupling limit (different from massive gravity)

You get plenty of symmetries that protect the theory!

Question: Before starting to talk about cosmology, isn’t all this ruled out by
. precision measurements?

Not in an obvious way

⇥ Current constraints on photon mass: m� ⇤ 10�19eV .
Tiny, but technically natural: protected by gauge symmetry.

⇥ Non-linear self interactions might lead to strong coupling e�ects screening
the longitudinal polarization

(Analogue of Vainshtein mechanism)

5

⇤ Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r

Safe regime

A0 ⇥ �Q

r

⇥ ⇥ � �Q

m2 r2

6

Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

10

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Screening with vectors

A Higgs mechanism

Typically theories with hard symmetry breaking have problems: lack of unitarity.

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions [Hull, Koyama,

GT]
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of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)
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to the ‘strong coupling’ scale at which the argument in the square root in eq. (15) becomes
appreciably different than one: this scale is given by

rs ≡
√
β

m
. (18)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The regime
rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in eq (13) can be
neglected, as well as the mass term, and the power-law configurations A0 ∼ 1/r, χ ∼ r2s/r

2 are
solutions for the equations of motion. It is an intermediate regime in which, although χ acquires
a non-trivial profile due to the non-linear interactions weighted by β, its effect is too weak to
appreciably influence the configuration for A0. It would be interesting to numerically investigate
the full strong coupling regime r ≪ rs, in particular to understand whether interesting screening
effects on this vector set-up appear, similarly to what happens for the gravitational Vainsthein
effect [17].

B. Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing that the
non-linear equations (11-12) preserve a (spatial) Galileon symmetry in the longitudinal polarization,
χ → χ+ a + bixi, and Galileon systems are known to exhibit a screening Vainshtein mechanism
[2] in gravitational set-ups. Indeed, our motivation for presenting the non-linear coupled equations
sourced by a static charge was precisely to point out this fact. We now investigate in more detail
how the vector Lagrangian (7) is connected with Galileons. We adopt the Stückelberg formalism,
trading everywhere Aµ for Aµ + 1/

(√
2m

)

∂µφ: the resulting Lagrangian is invariant under the

gauge symmetry Aµ → Aµ−∂µξ, φ → φ+
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders clearer
the interactions among the different degrees of freedom. The total Lagrangian reads, assuming
m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ

)

. (19)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (20)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (21)

The result of taking such a decoupling limit is a theory with two different symmetries 1: a
free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon scalar
Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.

5

to the ‘strong coupling’ scale at which the argument in the square root in eq. (15) becomes
appreciably different than one: this scale is given by

rs ≡
√
β

m
. (18)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The regime
rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in eq (13) can be
neglected, as well as the mass term, and the power-law configurations A0 ∼ 1/r, χ ∼ r2s/r

2 are
solutions for the equations of motion. It is an intermediate regime in which, although χ acquires
a non-trivial profile due to the non-linear interactions weighted by β, its effect is too weak to
appreciably influence the configuration for A0. It would be interesting to numerically investigate
the full strong coupling regime r ≪ rs, in particular to understand whether interesting screening
effects on this vector set-up appear, similarly to what happens for the gravitational Vainsthein
effect [17].

B. Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing that the
non-linear equations (11-12) preserve a (spatial) Galileon symmetry in the longitudinal polarization,
χ → χ+ a + bixi, and Galileon systems are known to exhibit a screening Vainshtein mechanism
[2] in gravitational set-ups. Indeed, our motivation for presenting the non-linear coupled equations
sourced by a static charge was precisely to point out this fact. We now investigate in more detail
how the vector Lagrangian (7) is connected with Galileons. We adopt the Stückelberg formalism,
trading everywhere Aµ for Aµ + 1/

(√
2m

)

∂µφ: the resulting Lagrangian is invariant under the

gauge symmetry Aµ → Aµ−∂µξ, φ → φ+
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders clearer
the interactions among the different degrees of freedom. The total Lagrangian reads, assuming
m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ

)

. (19)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (20)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (21)

The result of taking such a decoupling limit is a theory with two different symmetries 1: a
free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon scalar
Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.

4

with ∇⃗2 ≡ δij∂i∂j . The main difference with respect to the gauge invariant (and Proca) cases
is that the β contribution renders the A0 equation dependent on the quantity ∂iAi. Taking the
divergence of eq (9), we find

2m2 ∂iAi = −β∇2 A2
0 − 2β (∂iAi ∂jAj − ∂iAj ∂jAi) . (10)

In looking for a static field configuration, we separate the spatial vector components in transverse
and longitudinal parts, Ai = AT

i + ∂i χ with ∂iAT
i = 0. We focus here on a simplifying Ansatz

setting to zero the transverse polarizations AT
i = 0. Hence we end up with the coupled equations

for A0 and χ

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∇⃗2χ , (11)

∇⃗2χ = −
β

2m2
∇⃗2A2

0 −
β

2m2

[

(

∇⃗2 χ
)2

− (∂i∂j χ)
2
]

. (12)

Notice that, although the longitudinal polarization χ is not directly coupled to the source, never-
theless it ‘feels’ it via the non-linear term in eq. (11). Let us make the further simplifying Ansatz
of spherical symmetry, where all the functions depend only on the distance r from the origin, and
the previous two equations (11-12), after some manipulations, read

−
d

dr

(

r2A′
0

)

= r2 ρ− 2m2 r2A0 + 2β A0
d

dr

(

r2χ′) , (13)

χ′ =
2β

m2

χ′2

r
+

βA0A′
0

m2
, (14)

where a prime indicates derivative along r. Eq. (14) is a second order algebraic equation for χ′,
whose solution provides a relation between χ and A0 (we focus only on the branch that decays for
large values of r):

χ′ =
m2 r

4β

(

1−

√

1−
8β2 A0A′

0

m4 r

)

. (15)

This relation can be substituted in eq (13) to obtain a non-linear differential equation that govern
the behavior of the ‘electric field’ produced by the source. At large distances from the source,
where A0 is small, eq. (15) can be expressed as

χ′ ≃
β

m2
A0A

′
0

and one finds that both A0 and χ acquire a Yukawa-like suppression (we normalize to unity the
charge of the source):

A0 ≃
e−

√
2mr

r
, (16)

χ ≃
β e−2

√
2mr

2m2 r2
. (17)

Notice that χ decays more rapidly than A0. We call rm ≡ 1/
(√

2m
)

the distance at which the
Yukawa-like behavior due to the vector mass becomes important in determining the profile for A0:
well below this radius, the solution for the vector potential, eq (16), can be approximated by a
power-law. In this regime r ≪ rm, one can identify another characteristic distance, corresponding
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• Gravity is not the only observed long range force.
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⇥ But do it without introducing ghosts ! I.e. do not excite the ‘fourth’ mode

• The minimal interesting Lagrangians with derivative self-couplings are
(gravity added later)
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⇥ EOM for time-component A0 is constraint: no ghost!

⇥ In decoupling limit the longitudinal polarization is controlled by Galileons.
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the vector as

L(0) = −m2AµA
µ , (2)

L(1) = −β2 AµA
µ (∂ρA

ρ) , (3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρ A
σ∂ρAσ) + 3 (∂µA

µ) (∂ρ A
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρ A
µ − 3 ∂µ A

ν ∂ν A
ρ ∂µ Aρ

]

, (5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a mass,
while the βi are dimensionless couplings. The suffix (i) in the Lagrangians indicates the number
of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)

� Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r

6

5

to the ‘strong coupling’ scale at which the argument in the square root in eq. (15) becomes
appreciably different than one: this scale is given by

rs ≡
√
β

m
. (18)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The regime
rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in eq (13) can be
neglected, as well as the mass term, and the power-law configurations A0 ∼ 1/r, χ ∼ r2s/r

2 are
solutions for the equations of motion. It is an intermediate regime in which, although χ acquires
a non-trivial profile due to the non-linear interactions weighted by β, its effect is too weak to
appreciably influence the configuration for A0. It would be interesting to numerically investigate
the full strong coupling regime r ≪ rs, in particular to understand whether interesting screening
effects on this vector set-up appear, similarly to what happens for the gravitational Vainsthein
effect [17].

B. Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing that the
non-linear equations (11-12) preserve a (spatial) Galileon symmetry in the longitudinal polarization,
χ → χ+ a + bixi, and Galileon systems are known to exhibit a screening Vainshtein mechanism
[2] in gravitational set-ups. Indeed, our motivation for presenting the non-linear coupled equations
sourced by a static charge was precisely to point out this fact. We now investigate in more detail
how the vector Lagrangian (7) is connected with Galileons. We adopt the Stückelberg formalism,
trading everywhere Aµ for Aµ + 1/

(√
2m

)

∂µφ: the resulting Lagrangian is invariant under the

gauge symmetry Aµ → Aµ−∂µξ, φ → φ+
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders clearer
the interactions among the different degrees of freedom. The total Lagrangian reads, assuming
m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ

)

. (19)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (20)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (21)

The result of taking such a decoupling limit is a theory with two different symmetries 1: a
free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon scalar
Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.
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with ∇⃗2 ≡ δij∂i∂j . The main difference with respect to the gauge invariant (and Proca) cases
is that the β contribution renders the A0 equation dependent on the quantity ∂iAi. Taking the
divergence of eq (9), we find

2m2 ∂iAi = −β∇2 A2
0 − 2β (∂iAi ∂jAj − ∂iAj ∂jAi) . (10)

In looking for a static field configuration, we separate the spatial vector components in transverse
and longitudinal parts, Ai = AT

i + ∂i χ with ∂iAT
i = 0. We focus here on a simplifying Ansatz

setting to zero the transverse polarizations AT
i = 0. Hence we end up with the coupled equations

for A0 and χ

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∇⃗2χ , (11)

∇⃗2χ = −
β

2m2
∇⃗2A2

0 −
β

2m2

[

(

∇⃗2 χ
)2

− (∂i∂j χ)
2
]

. (12)

Notice that, although the longitudinal polarization χ is not directly coupled to the source, never-
theless it ‘feels’ it via the non-linear term in eq. (11). Let us make the further simplifying Ansatz
of spherical symmetry, where all the functions depend only on the distance r from the origin, and
the previous two equations (11-12), after some manipulations, read

−
d

dr

(

r2A′
0

)

= r2 ρ− 2m2 r2A0 + 2β A0
d

dr

(

r2χ′) , (13)

χ′ =
2β

m2

χ′2

r
+

βA0A′
0

m2
, (14)

where a prime indicates derivative along r. Eq. (14) is a second order algebraic equation for χ′,
whose solution provides a relation between χ and A0 (we focus only on the branch that decays for
large values of r):

χ′ =
m2 r

4β

(

1−

√

1−
8β2 A0A′

0

m4 r

)

. (15)

This relation can be substituted in eq (13) to obtain a non-linear differential equation that govern
the behavior of the ‘electric field’ produced by the source. At large distances from the source,
where A0 is small, eq. (15) can be expressed as

χ′ ≃
β

m2
A0A

′
0

and one finds that both A0 and χ acquire a Yukawa-like suppression (we normalize to unity the
charge of the source):

A0 ≃
e−

√
2mr

r
, (16)

χ ≃
β e−2

√
2mr

2m2 r2
. (17)

Notice that χ decays more rapidly than A0. We call rm ≡ 1/
(√

2m
)

the distance at which the
Yukawa-like behavior due to the vector mass becomes important in determining the profile for A0:
well below this radius, the solution for the vector potential, eq (16), can be approximated by a
power-law. In this regime r ≪ rm, one can identify another characteristic distance, corresponding
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the vector as

L(0) = −m2AµA
µ , (2)

L(1) = −β2 AµA
µ (∂ρA

ρ) , (3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρ A
σ∂ρAσ) + 3 (∂µA

µ) (∂ρ A
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρ A
µ − 3 ∂µ A

ν ∂ν A
ρ ∂µ Aρ

]

, (5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a mass,
while the βi are dimensionless couplings. The suffix (i) in the Lagrangians indicates the number
of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)
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to the ‘strong coupling’ scale at which the argument in the square root in eq. (15) becomes
appreciably different than one: this scale is given by

rs ≡
√
β

m
. (18)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The regime
rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in eq (13) can be
neglected, as well as the mass term, and the power-law configurations A0 ∼ 1/r, χ ∼ r2s/r

2 are
solutions for the equations of motion. It is an intermediate regime in which, although χ acquires
a non-trivial profile due to the non-linear interactions weighted by β, its effect is too weak to
appreciably influence the configuration for A0. It would be interesting to numerically investigate
the full strong coupling regime r ≪ rs, in particular to understand whether interesting screening
effects on this vector set-up appear, similarly to what happens for the gravitational Vainsthein
effect [17].

B. Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing that the
non-linear equations (11-12) preserve a (spatial) Galileon symmetry in the longitudinal polarization,
χ → χ+ a + bixi, and Galileon systems are known to exhibit a screening Vainshtein mechanism
[2] in gravitational set-ups. Indeed, our motivation for presenting the non-linear coupled equations
sourced by a static charge was precisely to point out this fact. We now investigate in more detail
how the vector Lagrangian (7) is connected with Galileons. We adopt the Stückelberg formalism,
trading everywhere Aµ for Aµ + 1/

(√
2m

)

∂µφ: the resulting Lagrangian is invariant under the

gauge symmetry Aµ → Aµ−∂µξ, φ → φ+
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders clearer
the interactions among the different degrees of freedom. The total Lagrangian reads, assuming
m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ

)

. (19)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (20)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (21)

The result of taking such a decoupling limit is a theory with two different symmetries 1: a
free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon scalar
Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.
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with ∇⃗2 ≡ δij∂i∂j . The main difference with respect to the gauge invariant (and Proca) cases
is that the β contribution renders the A0 equation dependent on the quantity ∂iAi. Taking the
divergence of eq (9), we find

2m2 ∂iAi = −β∇2 A2
0 − 2β (∂iAi ∂jAj − ∂iAj ∂jAi) . (10)

In looking for a static field configuration, we separate the spatial vector components in transverse
and longitudinal parts, Ai = AT

i + ∂i χ with ∂iAT
i = 0. We focus here on a simplifying Ansatz

setting to zero the transverse polarizations AT
i = 0. Hence we end up with the coupled equations

for A0 and χ

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∇⃗2χ , (11)

∇⃗2χ = −
β

2m2
∇⃗2A2

0 −
β

2m2

[

(

∇⃗2 χ
)2

− (∂i∂j χ)
2
]

. (12)

Notice that, although the longitudinal polarization χ is not directly coupled to the source, never-
theless it ‘feels’ it via the non-linear term in eq. (11). Let us make the further simplifying Ansatz
of spherical symmetry, where all the functions depend only on the distance r from the origin, and
the previous two equations (11-12), after some manipulations, read

−
d

dr

(

r2A′
0

)

= r2 ρ− 2m2 r2A0 + 2β A0
d

dr

(

r2χ′) , (13)

χ′ =
2β

m2

χ′2

r
+

βA0A′
0

m2
, (14)

where a prime indicates derivative along r. Eq. (14) is a second order algebraic equation for χ′,
whose solution provides a relation between χ and A0 (we focus only on the branch that decays for
large values of r):

χ′ =
m2 r

4β

(

1−

√

1−
8β2 A0A′

0

m4 r

)

. (15)

This relation can be substituted in eq (13) to obtain a non-linear differential equation that govern
the behavior of the ‘electric field’ produced by the source. At large distances from the source,
where A0 is small, eq. (15) can be expressed as

χ′ ≃
β

m2
A0A

′
0

and one finds that both A0 and χ acquire a Yukawa-like suppression (we normalize to unity the
charge of the source):

A0 ≃
e−

√
2mr

r
, (16)

χ ≃
β e−2

√
2mr

2m2 r2
. (17)

Notice that χ decays more rapidly than A0. We call rm ≡ 1/
(√

2m
)

the distance at which the
Yukawa-like behavior due to the vector mass becomes important in determining the profile for A0:
well below this radius, the solution for the vector potential, eq (16), can be approximated by a
power-law. In this regime r ≪ rm, one can identify another characteristic distance, corresponding
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].

Coupling to gravity

• Same technical issues one meets coupling to gravity scalar Galileons

Must ensure that EOMs remain second order

• The result is

• The total action is
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3

II. THE SYSTEM UNDER CONSIDERATION

We consider a theory of vector fields coupled to gravity, described by an action

S =

∫

d4x
√
−g

[

M2
∗

2
R−

1

4
FµνF

µν − Lcov
(0) − Lcov

(1) − Lcov
(2) − Λcc

]

, (1)

where M2
∗ R/2 is the Einstein-Hilbert term weighted by the square of Planck scale, −FµνFµν/4 is

the standard kinetic term for a vector potential Aµ, Λcc is a bare cosmological constant, and the
vector interactions Lcov

(i) that break the Abelian symmetry are defined as

Lcov
(0) = m2AµA

µ , (2)

Lcov
(1) = β1 AµA

µ (∇ρA
ρ) , (3)

Lcov
(2) =

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

. (4)

This is the minimal ghost-free Lagrangian studied in [12] that couples a vector field with gravity,
and leads to cosmological solutions with interesting features that we are going to analyze. Lcov

(0) is a
Proca mass term, while Lcov

(1, 2) are ghost-free derivative self-interactions. The structure of the self-
interactions is chosen in such a way that the equation of motion for the time-component A0 of the
vector field does not contain time derivatives. Hence the equation for A0 is a constraint equation
that fixes one degree of freedom, and the theory propagates only three degrees of freedom in the
vector sector 1. The Lagrangian can be further generalized maintaining the ghost free condition,
see for example [20]: however the minimal form of the action that we consider is particularly
interesting for us because of symmetry properties that we will exploit in what follows. We add a
bare cosmological constant Λcc in order to analyze how cosmological solutions depend on its size,
but for simplicity we will not explicitly discuss couplings with standard matter – although we will
comment on this topic from time to time.

In general, this theory does not have any symmetry besides the diffeomorphism invariance of
GR: indeed, the Lagrangians Lcov

(i) break the U(1) Abelian gauge symmetry Aµ → Aµ + ∂µξ.

On the other hand, as explained in [12], there exists a limit in which, by neglecting gravity and
taking small values for m, βi the theory acquires Abelian and Galileon symmetries acting on
the transverse and longitudinal vector polarizations. This limit is made particularly manifest
by adopting a Stückelberg approach, and supplementing the Lagrangians Lcov

(i) of eqs (2-4) with
interactions to a new scalar π, introduced in such a way to obtain a gauge-symmetric theory
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1 A similar set of interactions is studied in [19], but the coupling of the Ricci scalar with gravity is not taken in due
account, rendering the theory not ghost-free when dynamical gravity is considered.
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].

Coupling to gravity

• Same technical issues one meets coupling to gravity scalar Galileons

Must ensure that EOMs remain second order

• The result is

• The total action is
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II. THE SYSTEM UNDER CONSIDERATION

We consider a theory of vector fields coupled to gravity, described by an action

S =
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, (1)

where M2
∗ R/2 is the Einstein-Hilbert term weighted by the square of Planck scale, −FµνFµν/4 is

the standard kinetic term for a vector potential Aµ, Λcc is a bare cosmological constant, and the
vector interactions Lcov

(i) that break the Abelian symmetry are defined as
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(0) = m2AµA

µ , (2)
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(1) = β1 AµA

µ (∇ρA
ρ) , (3)
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(2) =
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[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−
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RAσA

σ

]

. (4)

This is the minimal ghost-free Lagrangian studied in [12] that couples a vector field with gravity,
and leads to cosmological solutions with interesting features that we are going to analyze. Lcov

(0) is a
Proca mass term, while Lcov

(1, 2) are ghost-free derivative self-interactions. The structure of the self-
interactions is chosen in such a way that the equation of motion for the time-component A0 of the
vector field does not contain time derivatives. Hence the equation for A0 is a constraint equation
that fixes one degree of freedom, and the theory propagates only three degrees of freedom in the
vector sector 1. The Lagrangian can be further generalized maintaining the ghost free condition,
see for example [20]: however the minimal form of the action that we consider is particularly
interesting for us because of symmetry properties that we will exploit in what follows. We add a
bare cosmological constant Λcc in order to analyze how cosmological solutions depend on its size,
but for simplicity we will not explicitly discuss couplings with standard matter – although we will
comment on this topic from time to time.

In general, this theory does not have any symmetry besides the diffeomorphism invariance of
GR: indeed, the Lagrangians Lcov

(i) break the U(1) Abelian gauge symmetry Aµ → Aµ + ∂µξ.

On the other hand, as explained in [12], there exists a limit in which, by neglecting gravity and
taking small values for m, βi the theory acquires Abelian and Galileon symmetries acting on
the transverse and longitudinal vector polarizations. This limit is made particularly manifest
by adopting a Stückelberg approach, and supplementing the Lagrangians Lcov

(i) of eqs (2-4) with
interactions to a new scalar π, introduced in such a way to obtain a gauge-symmetric theory

Lcov
(0) = m2

(

Aµ +
1√
2m

∂µπ

) (

Aµ +
1√
2m

∂µπ

)

(5)

Lcov
(1) = β1

(

Aµ +
1√
2m

∂µπ

) (

Aµ +
1√
2m

∂µπ

) (

∇ρA
ρ +

1√
2m

!π

)

, (6)

Lcov
(2) =

β2
m2

(

Aµ +
1√
2m

∂µπ

) (

Aµ +
1√
2m

∂µπ

)

×
[

(

∇ρA
ρ +

!π√
2m

)(

∇νA
ν +

!π√
2m

)

−
(

∇ρA
ν +

∇ρ∂ν π√
2m

)(

∇νA
ρ +

∇ν∂ρ π√
2m

)

−
1

4
R

(

Aσ +
1√
2m

∂σπ

) (

Aσ +
1√
2m

∂σπ

)

]

. (7)

1 A similar set of interactions is studied in [19], but the coupling of the Ricci scalar with gravity is not taken in due
account, rendering the theory not ghost-free when dynamical gravity is considered.
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):
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with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =
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i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
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This is the minimal ghost-free Lagrangian studied in [12] that couples a vector field with gravity,
and leads to cosmological solutions with interesting features that we are going to analyze. Lcov

(0) is a
Proca mass term, while Lcov

(1, 2) are ghost-free derivative self-interactions. The structure of the self-
interactions is chosen in such a way that the equation of motion for the time-component A0 of the
vector field does not contain time derivatives. Hence the equation for A0 is a constraint equation
that fixes one degree of freedom, and the theory propagates only three degrees of freedom in the
vector sector 1. The Lagrangian can be further generalized maintaining the ghost free condition,
see for example [20]: however the minimal form of the action that we consider is particularly
interesting for us because of symmetry properties that we will exploit in what follows. We add a
bare cosmological constant Λcc in order to analyze how cosmological solutions depend on its size,
but for simplicity we will not explicitly discuss couplings with standard matter – although we will
comment on this topic from time to time.

In general, this theory does not have any symmetry besides the diffeomorphism invariance of
GR: indeed, the Lagrangians Lcov

(i) break the U(1) Abelian gauge symmetry Aµ → Aµ + ∂µξ.

On the other hand, as explained in [12], there exists a limit in which, by neglecting gravity and
taking small values for m, βi the theory acquires Abelian and Galileon symmetries acting on
the transverse and longitudinal vector polarizations. This limit is made particularly manifest
by adopting a Stückelberg approach, and supplementing the Lagrangians Lcov

(i) of eqs (2-4) with
interactions to a new scalar π, introduced in such a way to obtain a gauge-symmetric theory
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1 A similar set of interactions is studied in [19], but the coupling of the Ricci scalar with gravity is not taken in due
account, rendering the theory not ghost-free when dynamical gravity is considered.
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].
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lead to interesting cosmological applications as accelerating configurations.
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with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
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interesting for us because of symmetry properties that we will exploit in what follows. We add a
bare cosmological constant Λcc in order to analyze how cosmological solutions depend on its size,
but for simplicity we will not explicitly discuss couplings with standard matter – although we will
comment on this topic from time to time.
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5 Screening with vector galileons

Non-minimal coupling with Ricci scalar
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Lcov

(0) = �m2A
µ

Aµ

Such counterterms are total derivatives in flat space

S =

Z
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The theory is still quadratic in the fields

vector inflation can be studied as Mukhanov’s scenario

The background equations are:

H2 =
1

2M2
P l

h
Ḃ2 +

�
m2 + (1 + 6⇠)H2

�
B2 + 2(1 + 4⇠) Ḃ BH

i
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⇤
B = 0

Cosmological perturbations don’t have previously found ghosts.

Still checking the details...
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5 Screening with vector galileons

Non-minimal coupling with Ricci scalar

The theory propagates five degrees of freedom around Minkowski
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Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:
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6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Cosmology

• Vector-tensor theories have long history in cosmology

⇤ Will, Nordvedt, Hellings theories of early ’70.

⇤ Einstein-Aether [Jacobson, Mattingly]

⇤ TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

⇤ Metric Ansatz

⇤ Matter content: �cc and vector
Vector equation is algebraic
Vector solution:

⇤ de Sitter solution:
Behaves as cosmological constant, with

�4
V = m3MPl

⇤ To match present-day acceleration rate,

m ⇤ �1

3

Interesting: technically natural value for the acceleration rate!

Since in the limit of small m, �i you recover Abelian and Galileon symmetries

de Sitter solutions

• Friedmann equation

• For small values of ⇥/�V , one gets Renormalization of Planck mass

• Cosmological fluctuations

⇤ Checked vector fluctuations neglecting gravity: they’re fine

⇤ TO DO: include coupling with gravity

Symmetry arguments can explain the size of dark energy scale

8

Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile

10

• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Additions

• Photon has two degrees of freedom: Aµ =
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i + ⌃i ⇤
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with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
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⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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7

The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Additions

• Photon has two degrees of freedom: Aµ =
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
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Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:
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. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions
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9 Dark energy from vector galileons

Simplest possibility: time-like vector background
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6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ
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with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:
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The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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⇤ Matter content: �cc and vector
Vector equation is algebraic
Vector solution:

⇤ de Sitter solution:
Behaves as cosmological constant, with

�4
V = m3MPl

⇤ To match present-day acceleration rate,

m ⇤ �1

3

Interesting: technically natural value for the acceleration rate!

Since in the limit of small m, �i you recover Abelian and Galileon symmetries

de Sitter solutions

• Friedmann equation

• For small values of ⇥/�V , one gets Renormalization of Planck mass

• Cosmological fluctuations

⇤ Checked vector fluctuations neglecting gravity: they’re fine

⇤ TO DO: include coupling with gravity

Symmetry arguments can explain the size of dark energy scale
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Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]

5

6 Dark energy from vector galileons

– 7 –

Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:

8

Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:

8

6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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i + ⌃i ⇤ and ⌃iAT

i = 0
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Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:
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6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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7

The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Cosmology

• Vector-tensor theories have long history in cosmology

⇤ Will, Nordvedt, Hellings theories of early ’70.

⇤ Einstein-Aether [Jacobson, Mattingly]

⇤ TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

⇤ Metric Ansatz

⇤ Matter content: �cc and vector
Vector equation is algebraic
Vector solution:

⇤ de Sitter solution:
Behaves as cosmological constant, with

�4
V = m3MPl

⇤ To match present-day acceleration rate,

m ⇤ �1

3

Interesting: technically natural value for the acceleration rate!

Since in the limit of small m, �i you recover Abelian and Galileon symmetries

de Sitter solutions

• Friedmann equation

• For small values of ⇥/�V , one gets Renormalization of Planck mass

• Cosmological fluctuations

⇤ Checked vector fluctuations neglecting gravity: they’re fine

⇤ TO DO: include coupling with gravity

Symmetry arguments can explain the size of dark energy scale

8

Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile

10

• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]

5

9 Dark energy from vector galileons

• Simplest possibility: time-like vector background

• Analogue of Vainsthein mechanism

• With m the vector mass, �i dimensionless vector galileon coupling constants

• de Sitter solution with

H2 ' �
m3

MP l

– 10 –
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6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads
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• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic
Vector solution:

� de Sitter solution:
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Additions
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A0, AT
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with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away
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Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]

5

9 Dark energy from vector galileons

• Simplest possibility: time-like vector background

• Analogue of Vainsthein mechanism

• de Sitter solution with

H2 ' �
m3

MP l

– 10 –

Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:

8

Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:

8

6

π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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7

The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Additions
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical
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The full theory is relatively easy to study – also beyond decoupling limit!
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Vector dark energy
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A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
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ρ) , (22)
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(2) = −

β2
m2

AµA
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ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫
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[
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2
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4
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with the aim to study its cosmological implications.
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with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].

Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:

8

7

The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Cosmology

• Vector-tensor theories have long history in cosmology

⇤ Will, Nordvedt, Hellings theories of early ’70.

⇤ Einstein-Aether [Jacobson, Mattingly]

⇤ TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

⇤ Metric Ansatz

⇤ Matter content: �cc and vector
Vector equation is algebraic
Vector solution:

⇤ de Sitter solution:
Behaves as cosmological constant, with

�4
V = m3MPl

⇤ To match present-day acceleration rate,

m ⇤ �1

3

Interesting: technically natural value for the acceleration rate!

Since in the limit of small m, �i you recover Abelian and Galileon symmetries

de Sitter solutions

• Friedmann equation

• For small values of ⇥/�V , one gets Renormalization of Planck mass

• Cosmological fluctuations

⇤ Checked vector fluctuations neglecting gravity: they’re fine

⇤ TO DO: include coupling with gravity

Symmetry arguments can explain the size of dark energy scale

8

Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile

10

• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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9 Dark energy from vector galileons

• Simplest possibility: time-like vector background

• Analogue of Vainsthein mechanism

• With m the vector mass, �i dimensionless vector galileon coupling constants

• de Sitter solution with

H2 ' �
m3

MP l
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• With m the vector mass, �i dimensionless vector galileon coupling constants

• de Sitter solution with

H2 ' �
m3

MP l

Size of acceleration proportional to the symmetry breaking parameters

– 10 –
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where L(quad)
EH is the expansion of the Einstein-Hilbert action at quadratic order, and the effective

Planck scale is given by

M2
± = M2

∗

(

1−
3β2 c40 m

6

2H4
±M2

∗

)

. (29)

In the previous formula, the ± denotes the choice of branch of background solutions for the Hubble
parameter in eq. (22). Using the results of Section II, M± can be expressed as

M2
± =

⎛

⎜

⎝
1 +

24 (1 + γ)

(γ − 1)3
(

λ±
√

λ2 − 24(3γ−1)
(γ−1)3

)2

⎞

⎟

⎠
M2

∗ . (30)

In order to have a consistent set-up, we impose M2
± > 0. Hence, if γ ̸= −1 the effective Planck scale

depends on the value of the cosmological constant, since it explicitly depends on λ, the parameter
that controls Λcc (see eq (17)). Let us point out that the quantity M2

± of eq (30) can be interpreted
as parameterizing the self-coupling scale of gravitational interactions. On the other hand, if vector
fields directly couple with standard matter, they can also have a role in determining the effective
coupling of gravity with any additional matter content.

B. Vector perturbations

Also vector fluctuations are not difficult to deal with. By splitting the metric shift vector
Ni = NT

i + ∂iψ, with NT
i the transverse components and ψ the longitudinal part, the momentum

constraint imposes NT
i = 0. Interestingly, a straightforward calculation shows that the mass of the

transverse vector fluctuations ÂT
i exactly vanishes around the background cosmological configura-

tions we are considering: at quadratic order, the Lagrangian density for the vector fluctuations ÂT
i

only contains the standard kinetic terms:

L(quad)
vec = −

1

4
FµνF

µν . (31)

Hence, we are dealing with a transverse vector fluctuations with healthy kinetic terms and zero
mass (although the transverse polarizations acquire interactions with the longitudinal component
at third order in perturbations). If we interpret the vector we are dealing with as the photon,
this implies that the usual constraints on the photon mass do not directly apply in the present
context, since the vector is massless. It would be interesting to study in detail the phenomenological
consequences of the higher order interactions associated with Lagrangians Lcov

(1) and Lcov
(2) , that can

lead to screening mechanisms analogous to the gravitational Vainshtein mechanism. This will be
the subject of a future work.

C. Scalar perturbations

The analysis of scalar vector fluctuations is also straightforward. The Hamiltonian and mo-
mentum constraint equations, using also the gauge freedom left at zero momentum, provide
the following conditions (recall that ψ is the longitudinal scalar part of the shift perturbations
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Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter
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FµνF
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Hence, we are dealing with a transverse vector fluctuations with healthy kinetic terms and zero
mass (although the transverse polarizations acquire interactions with the longitudinal component
at third order in perturbations). If we interpret the vector we are dealing with as the photon,
this implies that the usual constraints on the photon mass do not directly apply in the present
context, since the vector is massless. It would be interesting to study in detail the phenomenological
consequences of the higher order interactions associated with Lagrangians Lcov

(1) and Lcov
(2) , that can

lead to screening mechanisms analogous to the gravitational Vainshtein mechanism. This will be
the subject of a future work.

C. Scalar perturbations

The analysis of scalar vector fluctuations is also straightforward. The Hamiltonian and mo-
mentum constraint equations, using also the gauge freedom left at zero momentum, provide
the following conditions (recall that ψ is the longitudinal scalar part of the shift perturbations

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

• Vector Fluctuations

• Scalar Fluctuations

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

• Vector Fluctuations

• Scalar Fluctuations

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

• Vector Fluctuations

• Scalar Fluctuations

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

• Vector Fluctuations

• Scalar Fluctuations

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter

11

8

where L(quad)
EH is the expansion of the Einstein-Hilbert action at quadratic order, and the effective

Planck scale is given by

M2
± = M2

∗

(

1−
3β2 c40 m

6

2H4
±M2

∗

)

. (29)

In the previous formula, the ± denotes the choice of branch of background solutions for the Hubble
parameter in eq. (22). Using the results of Section II, M± can be expressed as

M2
± =

⎛

⎜

⎝
1 +

24 (1 + γ)

(γ − 1)3
(

λ±
√

λ2 − 24(3γ−1)
(γ−1)3

)2

⎞

⎟

⎠
M2

∗ . (30)
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that controls Λcc (see eq (17)). Let us point out that the quantity M2

± of eq (30) can be interpreted
as parameterizing the self-coupling scale of gravitational interactions. On the other hand, if vector
fields directly couple with standard matter, they can also have a role in determining the effective
coupling of gravity with any additional matter content.

B. Vector perturbations

Also vector fluctuations are not difficult to deal with. By splitting the metric shift vector
Ni = NT

i + ∂iψ, with NT
i the transverse components and ψ the longitudinal part, the momentum

constraint imposes NT
i = 0. Interestingly, a straightforward calculation shows that the mass of the

transverse vector fluctuations ÂT
i exactly vanishes around the background cosmological configura-

tions we are considering: at quadratic order, the Lagrangian density for the vector fluctuations ÂT
i

only contains the standard kinetic terms:
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Hence, we are dealing with a transverse vector fluctuations with healthy kinetic terms and zero
mass (although the transverse polarizations acquire interactions with the longitudinal component
at third order in perturbations). If we interpret the vector we are dealing with as the photon,
this implies that the usual constraints on the photon mass do not directly apply in the present
context, since the vector is massless. It would be interesting to study in detail the phenomenological
consequences of the higher order interactions associated with Lagrangians Lcov

(1) and Lcov
(2) , that can

lead to screening mechanisms analogous to the gravitational Vainshtein mechanism. This will be
the subject of a future work.
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• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance
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Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions
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I

I cosmology: can non-linear e↵ects lead to cosmological acceleration ?

I Simplest possibility: turn on a background profile A0(t) . purely timelike vector field

everything can be done analytically (no subtle decoupling limits around cosmological

space-time needed!)

... strong coupling phenomenon: perturbations around de Sitter have zero kin term

( analog of massive gravity)

Strong coupling issue scalar perturbations have no kinetic terms

(analog of massive gravity)

Probably signal instability
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3 Vectors coupled to gravity: Magnetogenesis and Vector Inflation
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S =
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F 2 � 1
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m2 + ⇠R
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Break the conformal invariance of Maxwell eqs to get interesting cosmology:

I Magnetogenesis [Turner, Widrow]

Magnetic field magnitude: | ~B|2 / a�5+
p
1�48 ⇠

For negative ⇠, one avoids the cosmological decay of magnetic field

I Vector inflation [Golovnev, Mukhanov, Vanchurin; Armendariz-Picon, ....],

FRW cosmology from triplet of vectors each pointing in di↵erent spatial direction

A(1)
µ = (0, a(t)B(t), 0, 0) ; A(2)

µ = (0, 0, a(t)B(t), 0) ; A(3)
µ = (0, 0, 0, a(t)B(t))

...or large number of vectors with random directions...

Choose ⇠ = �1/6. Equations of motion:

H2 =
1

2M2
P l

h
Ḃ2 +m2 B2

i

B̈ + 3H Ḃ +m2 B = 0

Very similar to chaotic inflation

Interesting:

- Simple alternative to scalar-field inflation!

- Small violation of isotropy can be easily generated, by coupling N vectors

- Cosmological perturbations have specific features:

coupling between modes at linearized level, anisotropic stress etc etc

- Can be used for dark energy as well

But:

- This scenario has ghost instabilities [Himmetoglu, Contaldi, Peloso]
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Ḃ2 +m2 B2

i
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Ḃ2 +m2 B2

i
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Ḃ2 +m2 B2

i
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Ḃ2 +m2 B2

i
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Ḃ2 +m2 B2

i
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B̈ + 3H Ḃ +m2 B = 0

Very similar to chaotic inflation

Interesting:

- Simple alternative to scalar-field inflation!

- Small violation of isotropy can be easily generated, by coupling N vectors

- Cosmological perturbations have specific features:

coupling between modes at linearized level, anisotropic stress etc etc

- Can be used for dark energy as well

But:

- This scenario has ghost instabilities [Himmetoglu, Contaldi, Peloso]

Way out to resurrect the model

Use vector galileons

Add derivative ‘‘counterterms’’ that remove the ghost

Such counterterms are total derivatives in flat space

S =

Z
d4x

p
�g


M2

P l

2
R� 1

4
F 2 � 1

2

�
m2 + ⇠R

�
AµA

µ + ⇠
h
(rµA

µ)2 �rµA⌫rµA⌫
i�

– 14 –

13 Vectors coupled to gravity: Magnetogenesis and Vector Inflation

Couple gauge potential Aµ to curvature Rµ⌫

S =

Z
d4x

p
�g


M2

P l

2
R� 1

4
F 2 � 1

2

�
m2 + ⇠R

�
AµA

µ

�

Break the conformal invariance of Maxwell eqs to get interesting cosmology:

I Magnetogenesis [Turner, Widrow]

Magnetic field magnitude: | ~B|2 / a�5+
p
1�48 ⇠

For negative ⇠, one avoids the cosmological decay of magnetic field

I Vector inflation [Golovnev, Mukhanov, Vanchurin; Armendariz-Picon, ....],

FRW cosmology from triplet of vectors each pointing in di↵erent spatial direction

A(1)
µ = (0, a(t)B(t), 0, 0) ; A(2)

µ = (0, 0, a(t)B(t), 0) ; A(3)
µ = (0, 0, 0, a(t)B(t))

...or large number of vectors with random directions...

Choose ⇠ = �1/6. Equations of motion:

H2 =
1

2M2
P l

h
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B̈ + 3H Ḃ +m2 B = 0

Very similar to chaotic inflation

Interesting:

- Simple alternative to scalar-field inflation!

- Small violation of isotropy can be easily generated, by coupling N vectors

- Cosmological perturbations have specific features:

coupling between modes at linearized level, anisotropic stress etc etc

- Can be used for dark energy as well

But:

- This scenario has ghost instabilities [Himmetoglu, Contaldi, Peloso]

Way out to resurrect the model

Use vector galileons

Add derivative ‘‘counterterms’’ that remove the ghost

Such counterterms are total derivatives in flat space

S =

Z
d4x

p
�g


M2

P l

2
R� 1

4
F 2 � 1

2

�
m2 + ⇠R

�
AµA

µ + ⇠
h
(rµA

µ)2 �rµA⌫rµA⌫
i�

– 14 –



10 Vectors coupled to gravity: Magnetogenesis and Vector Inflation

Couple gauge potential Aµ to curvature Rµ⌫

S =

Z
d4x

p
�g


M2

P l

2
R� 1

4
F 2 � 1

2

�
m2 + ⇠R

�
AµA

µ

�

Break the conformal invariance of Maxwell eqs to get interesting cosmology:

I Magnetogenesis [Turner, Widrow]

Magnetic field magnitude: | ~B|2 / a�5+
p
1�48 ⇠

For negative ⇠, one avoids the cosmological decay of magnetic field

I Vector inflation [Golovnev, Mukhanov, Vanchurin; Armendariz-Picon, ....],

FRW cosmology from triplet of vectors each pointing in di↵erent spatial direction

A(1)
µ = (0, a(t)B(t), 0, 0) ; A(2)

µ = (0, 0, a(t)B(t), 0) ; A(3)
µ = (0, 0, 0, a(t)B(t))

...or large number of vectors with random directions...

Choose ⇠ = �1/6. Equations of motion:

H2 =
1

2M2
P l

h
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µ = (0, 0, 0, a(t)B(t))

...or large number of vectors with random directions...

Choose ⇠ = �1/6. Equations of motion:

H2 =
1

2M2
P l

h
Ḃ2 +m2 B2

i

B̈ + 3H Ḃ +m2 B = 0

Very similar to chaotic inflation

Interesting:

- Simple alternative to scalar-field inflation!

- Small violation of isotropy can be easily generated, by coupling N vectors

- Cosmological perturbations have specific features:

coupling between modes at linearized level, anisotropic stress etc etc

- Can be used for dark energy as well

But:

- This scenario has ghost instabilities [Himmetoglu, Contaldi, Peloso]
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Couple gauge potential Aµ to curvature Rµ⌫

S =

Z
d4x

p
�g


M2

P l

2
R� 1

4
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m2 + ⇠R
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AµA

µ

�

Break the conformal invariance of Maxwell eqs to get interesting cosmology:

I Magnetogenesis [Turner, Widrow]

Magnetic field magnitude: | ~B|2 / a�5+
p
1�48 ⇠

For negative ⇠, one avoids the cosmological decay of magnetic field

I Vector inflation [Golovnev, Mukhanov, Vanchurin; Armendariz-Picon, ....],

FRW cosmology from triplet of vectors each pointing in di↵erent spatial direction

A(1)
µ = (0, a(t)B(t), 0, 0) ; A(2)

µ = (0, 0, a(t)B(t), 0) ; A(3)
µ = (0, 0, 0, a(t)B(t))

...or large number of vectors with random directions...

Choose ⇠ = �1/6. Equations of motion:

H2 =
1

2M2
P l

h
Ḃ2 +m2 B2

i

B̈ + 3H Ḃ +m2 B = 0

Very similar to chaotic inflation

Interesting:

- Simple alternative to scalar-field inflation!

- Small violation of isotropy can be easily generated, by coupling N vectors

- Cosmological perturbations have specific features:

coupling between modes at linearized level, anisotropic stress etc etc

- Can be used for dark energy as well

But:

- This scenario has ghost instabilities [Himmetoglu, Contaldi, Peloso]

Way out to resurrect the model

Use vector galileons

Add derivative ‘‘counterterms’’ that remove the ghost

S =

Z
d4x

p
�g


M2

P l

2
R� 1

4
F 2 � 1

2

�
m2 + ⇠R

�
AµA

µ + ⇠
h
(rµA

µ)2 �rµA⌫rµA⌫
i�
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The theory is still quadratic in the fields

vector inflation can be studied as Mukhanov’s scenario

The background equations are:

H2 =
1

2M2
P l

h
Ḃ2 +

�
m2 + (1 + 6⇠)H2

�
B2 + 2(1 + 4⇠) Ḃ BH

i

B̈ + 3H Ḃ +
⇥
m2 +H2(2 + ⇠(6� 4✏)� ✏))

⇤
B = 0

Perturbations around accelerating cosmologies don’t have ghosts. Still checking

the details...
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vector inflation can be studied as Mukhanov’s scenario

The background equations are:

H2 =
1

2M2
P l

h
Ḃ2 +

�
m2 + (1 + 6⇠)H2

�
B2 + 2(1 + 4⇠) Ḃ BH

i

B̈ + 3H Ḃ +
⇥
m2 +H2(2 + ⇠(6� 4✏)� ✏))

⇤
B = 0

Cosmological perturbations don’t have previously found ghosts.

Still checking the details...
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14 Conclusions

I Vector Galileons allow to get galileons as Goldstone bosons of U(1) gauge

symmetry breaking operators.

I They represent a concrete, simple setting for studying field theory and cosmology

set-ups enjoying galileon symmetries in appropriate limits

I They share some of the features (and problems) with systems like massive gravity.

Accelerating solutions driven by time-like vectors have strong coupling problems.

I Given the simplicity of the set-up, cosmology can be studied relatively easily, includ-

ing possibilities so far unexplored:

– anisotropic field configurations, that leads to (quasi)isotropic FRW metric

– stability of configurations with vectors non-minimally coupled with curvature
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