A unifying description of dark energy

Filippo Vernizzi - IPhT, CEA Saclay

Based on:

- 1504.05481 and 1509.02191 with J. Gleyzes, D. Langlois and M. Mancarella
(1411.3712 with J. Gleyzes and D. Langlois,
1304.4840 with J. Gleyzes, D. Langlois and F. Piazza,
1210.0201 with G. Gubitosi and F. Piazza)

KICP, Chicago - October 13, 2015

Motivations

O Observed expansion history consistent with LCDM $(w=-1)$

O LCDM expansion predicts a unique growth of structures, consistent with data. Any dynamics beyond LCDM implies time/space deviations

0
Expected 1-2 order-of-magnitude improvement in measurment of the growth history of structures, over large redshift range (Euclid, LSST, etc.).

Motivations

O Observed expansion history consistent with LCDM ($w=-1$)

O LCDM expansion predicts a unique growth of structures, consistent with data. Any dynamics beyond LCDM implies time/space deviationsExpected 1-2 order-of-magnitude improvement in measurment of the growth history of structures, over large redshift range (Euclid, LSST, etc.).

Planck '15 "Cosmological Parameters"

O Given the many DE and MG models, we need a simple way to bridge theoretical modelling with observations: unifying and effective treatment.Focus on single field models and large cosmological scales (linear perturbation theory is applicable). Minimal non-redundant action.Analogous approach (EOM) is the Parameterized Post-Friedmann framework

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

* ADM $(3+1)$ decomposition in unitary gauge:

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

* ADM $(3+1)$ decomposition in unitary gauge:

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

2. Action: all terms that respect spatial diffs in the action (Jordan frame)

$$
S=\int d^{4} x \sqrt{-g} L\left[t ; N, K_{j}^{i},{ }^{(3)} R_{j}^{i}, \ldots\right]
$$

Lapse	N	time kinetic energy of scalar	$\sim \dot{\phi}$
Extrinsic curvature	$K_{i j}$	time kinetic energy of metric	$\sim \partial_{t} g_{i j}$
B Intrinsic 3d curvature	${ }^{(3)} R_{i j}$	spatial kinetic energy of metric	$\sim \partial_{k} g_{i j}$

$$
K_{i j}=\frac{1}{2 N}\left(\dot{h}_{i j}-\nabla_{i} N_{j}-\nabla_{j} N_{i}\right)
$$

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

ק ADM (3+1) decomposition in unitary gauge:

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

2. Action: all terms that respect spatial diffs in the action (Jordan frame)

$$
S=\int d^{4} x \sqrt{-g} L\left[t ; N, K_{j}^{i},{ }^{(3)} R_{j}^{i}, \ldots\right]
$$

3. Expand at quadratic order (i.e. linear theory)

$$
\begin{gathered}
\text { 3-d tensors: } \quad \delta N \equiv N-1, \quad \delta K_{i j} \equiv K_{i j}-H h_{i j}, \quad{ }^{(3)} R_{i j} \\
L\left(N, K_{j}^{i}, R_{j}^{i}, \ldots\right)=\bar{L}+L_{N} \delta N+\frac{\partial L}{\partial K_{j}^{i}} \delta K_{j}^{i}+\frac{\partial L}{\partial R_{j}^{i}} \delta R_{j}^{i}+L^{(2)}+\ldots \\
L^{(2)}= \\
=\frac{1}{2} L_{N N} \delta N^{2}+\frac{1}{2} \frac{\partial^{2} L}{\partial K_{j}^{i} \partial K_{l}^{k}} \delta K_{j}^{i} \delta K_{l}^{k}+\frac{1}{2} \frac{\partial^{2} L}{\partial R_{j}^{i} \partial R_{l}^{k}} \delta R_{j}^{i} \delta R_{l}^{k}+ \\
\\
+\frac{\partial^{2} L}{\partial K_{j}^{i} \partial R_{l}^{k}} \delta K_{j}^{i} \delta R_{l}^{k}+\frac{\partial^{2} L}{\partial N \partial K_{j}^{i}} \delta N \delta K_{j}^{i}+\frac{\partial^{2} L}{\partial N \partial R_{j}^{i}} \delta N \delta R_{j}^{i}+\ldots
\end{gathered}
$$

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

ADM (3+1) decomposition in unitary gauge:

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

2. Action: all terms that respect spatial diffs in the action (Jordan frame)

$$
S=\int d^{4} x \sqrt{-g} L\left[t ; N, K_{j}^{i},{ }^{(3)} R_{j}^{i}, \ldots\right]
$$

3. Expand at quadratic order (i.e. linear theory)
3-d tensors: $\quad \delta N \equiv N-1$, $\delta K_{i j} \equiv K_{i j}-H h_{i j}$, ${ }^{(3)} R_{i j}$
4. Remove higher time and space derivatives and define convenient coefficients
1304.4840 with Gleyzes, Langlois, Piazza Notation from 1404.3713 Bellini \& Sawicki

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}\left(\text { th }^{2}\right)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

* General Relativity (LCDM)

Building blocks of dark energy

$$
S^{(2)}=\int d^{4} x a^{3} \frac{M^{2}(\not ้)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right.
$$

$$
\left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
$$

* Standard kinetic term: quintessence, k-essence $\quad P\left(\phi,(\partial \phi)^{2}\right)$
α_{K} parametrizes kineticity of dark energy $\sim(1+w) \Omega_{\mathrm{DE}} / \mathrm{cs}^{2}$

kineticity					
	α_{K}	α_{B}	α_{M}	α_{T}	α_{H}
quintessence, k-essence	\boldsymbol{V}				

Building blocks of dark energy

$$
S^{(2)}=\int d^{4} x a^{3} \frac{M^{2}(\not ้)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right.
$$

$$
+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
$$

* Kinetic braiding: DGP, KGB $K\left(\phi,(\partial \phi)^{2}\right) \square \phi$
α_{B} parametrizes kinetic mixing with gravity (braiding)

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

* Non-minimal couplings: Brans-Dicke, $\mathrm{f}(\mathrm{R}) \quad f(\phi) R, f(R), f(G)$

$$
\alpha_{M}=\frac{d \ln M^{2}}{H d t} \quad \text { parametrizes non-minimal coupling to } R\left(\mathrm{ex}: \mathrm{a}_{\mathrm{M}}=-2 \mathrm{a}_{\mathrm{B}} \text { in } f(R)\right)
$$

	kineticity α_{K}	kinetic braiding α_{B}	non-minimal coupling α_{M}	α_{T}	α_{H}
quintessence, k-essence	\checkmark				
DGP, kinetic braiding	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

* Enhanced tensor sound speed: all Horndeski theories
α_{T} parametrizes deviation from tensor sound-speed $=c$

	kineticity α_{K}	kinetic braiding α_{B}	non-minimal coupling α_{M}	tensor soundspeed α_{T}	α_{H}
quintessence, k-essence	\checkmark				
DGP, kinetic braiding	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& +\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
\end{aligned}
$$

* Kinetic mixing with matter: beyond Horndeski theories
α_{H} parametrizes extensions of Horndeski theories

	kineticity α_{K}	kinetic braiding α_{B}	non-minimal coupling α_{M}	tensor soundspeed α_{T}	kinetic mixing with matter α_{H}
quintessence, k-essence	\checkmark				
DGP, kinetic braiding	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	
Beyond Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& +\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
\end{aligned}
$$

* Kinetic mixing with matter: beyond Horndeski theories

$$
\alpha_{H} \text { parametrizes extensions of Horndeski theories }
$$

B Stability conditions:

Scalar	Tensor	
No ghosts	$\alpha_{K}+6 \alpha_{B}^{2}>0$	$M^{2}>0$
No gradient instability	$c_{s}^{2}\left(\alpha_{i}\right) \geq 0$	$\alpha_{T} \geq-1$

Theoretical restriction on the parameter space

Universal couplings

() Horndeski case ($\alpha_{H}=0$):

$$
S_{\text {gravity }}=\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right)
$$

Equivalence Principle. All species are coupled to the same metric:
For each species: $\quad S_{\mathrm{m}}=\int d^{4} x \sqrt{-g} \mathcal{L}\left(g_{\mu \nu}, \psi_{\mathrm{m}}\right)$

Non-universal couplings

1504.05481 with Gleyzes, Langlois, Mancarella

Horndeski case $\left(\alpha_{H}=0\right)$:

$$
S_{\text {gravity }}=\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right)
$$

Equivalence Principle. Species are coupled to different metrics:
For each species: $\quad S_{\mathrm{m}}=\int d^{4} x \sqrt{-g} \mathcal{L}\left(\tilde{g}_{\mu \nu}, \psi_{\mathrm{m}}\right)$

$$
\tilde{g}_{\mu \nu}=C(\phi) g_{\mu \nu}+D(\phi) \partial_{\mu} \phi \partial_{\nu} \phi
$$

Two new parameters per species:

$$
\alpha_{C} \equiv \frac{1}{2} \frac{d \ln C}{d \ln a}
$$

$$
\alpha_{D} \equiv \frac{D}{C-D}
$$

Non-universal couplings

1504.05481 with Gleyzes, Langlois, Mancarella

Horndeski case $\left(\alpha_{H}=0\right)$:

$$
S_{\text {gravity }}=\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right)
$$

Equivalence Principle. Species are coupled to different metrics:
For each species: $\quad S_{\mathrm{m}}=\int d^{4} x \sqrt{-g} \mathcal{L}\left(\tilde{g}_{\mu \nu}, \psi_{\mathrm{m}}\right)$

$$
\tilde{g}_{\mu \nu}=C(\phi) g_{\mu \nu}+D(\phi) \partial_{\mu} \phi \partial_{\nu} \phi
$$

Two new parameters per species:

$$
\alpha_{C} \equiv \frac{1}{2} \frac{d \ln C}{d \ln a}
$$

$$
\alpha_{D} \equiv \frac{D}{C-D}
$$

B Structure of Horndeski invariant under the above metric transformation

Parameter-space rotation

1504.05481 with Gleyzes, Langlois, Mancarella

Total of $4+2$ Ns parameters:

$$
\begin{aligned}
S_{\text {gravity }} & =\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
S_{\text {matter }} & =\sum_{I}^{\mathrm{N}_{\mathrm{S}}} \int d^{4} x \sqrt{-g} \mathcal{L}_{I}\left(g_{\mu \nu} ; \alpha_{C, I}, \alpha_{D, I} ; \psi_{I}\right)
\end{aligned}
$$

B With a rotation in parameter space, $\tilde{\alpha}_{i}=\mathcal{F}_{i}\left(\alpha_{j}\right)$, we can choose a base where one of the species is minimally coupled: $4+2 \mathrm{~N}_{\mathrm{s}}-2=2\left(\mathrm{~N}_{\mathrm{s}}+1\right)$

Parameter-space rotation

1504.05481 with Gleyzes, Langlois, Mancarella

Total of $4+2$ Ns parameters:

$$
\begin{aligned}
S_{\text {gravity }} & =\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
S_{\text {matter }} & =\sum_{I}^{\mathrm{N}_{\mathrm{S}}} \int d^{4} x \sqrt{-g} \mathcal{L}_{I}\left(g_{\mu \nu} ; \alpha_{C, I}, \alpha_{D, I} ; \psi_{I}\right)
\end{aligned}
$$

b With a rotation in parameter space, $\tilde{\alpha}_{i}=\mathcal{F}_{i}\left(\alpha_{j}\right)$, we can choose a base where one of the species is minimally coupled: $4+2 \mathrm{~N}_{\mathrm{s}}-2=2\left(\mathrm{~N}_{\mathrm{s}}+1\right)$

Ghost and gradient stability conditions are invariant under rotation in par. space

B Observables invariant. Example: $\quad \frac{\tilde{c}_{I}^{2}}{\tilde{c}_{J}^{2}}=\frac{c_{I}^{2}}{c_{J}^{2}}$

B Inflation: no matter $\left(\mathrm{N}_{\mathrm{S}}=0\right)$. We have 2 independent parameters, ex. α_{K} and α_{B}

$$
\delta N^{2}, \quad \delta N \delta K
$$

Parameter-space rotation

1504.05481 with Gleyzes, Langlois, Mancarella

Total of $4+2$ Ns parameters:

$$
\begin{aligned}
S_{\text {gravity }} & =\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
S_{\text {matter }} & =\sum_{I}^{\mathrm{N}_{\mathrm{S}}} \int d^{4} x \sqrt{-g} \mathcal{L}_{I}\left(g_{\mu \nu} ; \alpha_{C, I}, \alpha_{D, I} ; \psi_{I}\right)
\end{aligned}
$$

b With a rotation in parameter space, $\tilde{\alpha}_{i}=\mathcal{F}_{i}\left(\alpha_{j}\right)$, we can choose a base where one of the species is minimally coupled: $4+2 \mathrm{~N}_{\mathrm{s}}-2=2\left(\mathrm{~N}_{\mathrm{s}}+1\right)$

Ghost and gradient stability conditions are invariant under rotation in par. space

B Observables invariant. Example: $\quad \frac{\tilde{c}_{I}^{2}}{\tilde{c}_{J}^{2}}=\frac{c_{I}^{2}}{c_{J}^{2}}$

B Inflation: no matter $\left(\mathrm{N}_{\mathrm{S}}=0\right)$. We have 2 independent parameters, ex. α_{K} and α_{B}

$$
\delta N^{2}, \quad \delta N \delta K
$$

Constraining dark energy

- Can we constrain these parameters?

Constraining dark energy

1509.02191 with Gleyzes, Langlois, Mancarella (see also Baker at al. '13 \& Leonard et al. '15,

Piazza et al. '13, Perenon et al. '15)

- Can we constrain these parameters?
- Undo unitary gauge: $\quad t \rightarrow t+\pi(t, \vec{x})$
- Newtonian gauge (scalar flucts): $\quad d t^{2}=-(1+2 \Phi) d t^{2}+a^{2}(t)(1-2 \Psi) d \vec{x}^{2}$

Constraining dark energy

1509.02191 with Gleyzes, Langlois, Mancarella (see also Baker at al. '13 \& Leonard et al. '15,

- Can we constrain these parameters?
- Undo unitary gauge: $\quad t \rightarrow t+\pi(t, \vec{x})$
- Newtonian gauge (scalar flucts): $\quad d t^{2}=-(1+2 \Phi) d t^{2}+a^{2}(t)(1-2 \Psi) d \vec{x}^{2}$
- Fisher matrix forecasts, Euclid-like specifications.

$\delta_{\mathrm{g}, s}(\vec{k})=\left(b_{\mathrm{g}}^{2}+\mu^{2} f_{\mathrm{eff}}\right) \delta_{\mathrm{m}}(t, k)$

$\Phi+\Psi$

$\dot{\Phi}+\dot{\Psi}$
- Quasi-static approximations - valid on scales $k \gg a H c_{s}^{-1}$. Sawicki, Bellini '15 E.g., for surveys such as Euclid $c_{s} \gtrsim 0.1$.

Standard case

Modified gravity

$$
\begin{gathered}
\Upsilon_{G}=\Upsilon_{G}\left(\alpha_{B}, \alpha_{M}, \alpha_{T}\right), \quad \Upsilon_{\text {lens }}=\Upsilon_{\text {lens }}\left(\alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
\text { Modifications of gravity }
\end{gathered}
$$

DTime dependence of coefficients: $\quad \alpha_{I}(t)=\alpha_{I, 0} \frac{1-\Omega_{\mathrm{m}}(t)}{1-\Omega_{\mathrm{m}, 0}}$

+ Nonminimal coupling

$$
\Upsilon_{G}^{\Upsilon_{G}=\Upsilon_{G}\left(\alpha_{B}, \alpha_{M}, \alpha_{T}\right), \quad \Upsilon_{\text {lens }}=\Upsilon_{\text {lens }}\left(\alpha_{B}, \alpha_{M}, \alpha_{T}\right),} \underset{\substack{\text { Modifications of gravity }}}{\beta_{\gamma, I} \propto \gamma_{I}\left(\alpha_{C_{I}}, \alpha_{D_{I}}\right)} \text { non-minimal coupling }
$$

Time dependence of coefficients: $\begin{aligned} \alpha_{I}(t)=\alpha_{I, 0} \frac{1-\Omega_{\mathrm{m}}(t)}{1-\Omega_{\mathrm{m}, 0}}, \beta_{\gamma}=\beta_{\gamma, c}=\mathrm{const} \\ \beta_{\gamma, b}=0\end{aligned}$

Baryons + coupled CDM

Obs.	$10^{3} \times \sigma\left(\alpha_{\mathrm{B}, 0}\right)$	$10^{3} \times \sigma\left(\alpha_{\mathrm{M}, 0}\right)$	$10^{3} \times \sigma\left(\alpha_{\mathrm{T}, 0}\right)$	$10^{4} \times \sigma\left(\beta_{\gamma}^{2}\right)$
GC	18.6	24.5	-	1.4
WL	4.2	40.1	-	5.7
ISW-g	1.8	8.6	-	6.9
Comb	1.7	8.0	-	1.3

Fiducial: LCDM, no interactions

Baryons + coupled CDM

Obs.	$10^{3} \times \sigma\left(\alpha_{\mathrm{B}, 0}\right)$	$10^{3} \times \sigma\left(\alpha_{\mathrm{M}, 0}\right)$	$10^{3} \times \sigma\left(\alpha_{\mathrm{T}, 0}\right)$	$10^{4} \times \sigma\left(\beta_{\gamma}^{2}\right)$
GC	18.6	24.5	-	1.4
WL	4.2	40.1	-	5.7
ISW-g	1.8	8.6	-	6.9
Comb	1.7	8.0	-	1.3

Fiducial: LCDM, no interactions
Degeneracy:

$$
\begin{aligned}
& \Upsilon_{G} \simeq \Upsilon_{\mathrm{lens}} \simeq \alpha_{M} \\
& \Upsilon_{G} \simeq \Upsilon_{\mathrm{lens}} / 2 \simeq-\frac{2}{2+3 \Omega_{\mathrm{m}}} \alpha_{B}
\end{aligned}
$$

lensing degeneracy explained by taking into account of background evolution

Baryons + coupled CDM

Obs.	$10^{3} \times \sigma\left(\alpha_{\mathrm{B}, 0}\right)$	$10^{3} \times \sigma\left(\alpha_{\mathrm{M}, 0}\right)$	$10^{3} \times \sigma\left(\alpha_{\mathrm{T}, 0}\right)$	$10^{4} \times \sigma\left(\beta_{\gamma}^{2}\right)$
GC	0.40	0.22	0.22	1.4
WL	2.14	0.18	0.18	5.6
ISW-g	1.11	0.08	0.08	7.5
Comb	0.37	0.07	0.07	1.3

Fiducial: LCDM, interacting CDM

$$
\beta_{\gamma}=-0.03
$$

Conclusions

* General description of linear perturbations in scalar-tensor theories of gravity, with non-universal couplings
* Efficient (minimal) and systematic way to parametrize observations on large scales (linear regime) and address stability
* Forecasts: unmarginalized errors $\sim 10^{-3}$ on parameters describing modifications of gravity. Degeneracies and dependence on the fiducial model.
* Future: Relax assumptions (beyond linear regime, more degrees of freedom, etc...), explore phenomenology and forecasts beyond the quasi-static approximation.

