Planck cosmology and more than you ever wanted to know about beam window functions

E. Hivon (IAP) on behalf of the *Planck* collaboration

At a time t, the polarised CMB detector j sees $d_{j,t} = B_j(\psi_{j,t})^* g_j \left[I + \rho_j Q \cos(2\psi_{j,t}) + \rho_j U \sin(2\psi_{j,t}) \right] + n_{j,t}$ where B_j, g_j, ρ_j and ψ_j are poorly known or unknown before flight

- determination of beam (B_j)
- mismatched or non-circular beam \rightarrow T to P leakage
- error on beam (B_j)
- error on gain (g_i), polar efficiency (ρ_i), polar angles (ψ_i)
- are the beams copolar ?

QuickPol

- Temperature QuickBeam (used in Planck DRI and DR2):
 \$\$a=2\$
 - $+ C'_{\ell}^{TT} = Σ_{a} ω_{a}^{2} b_{\ell a}^{*} b_{\ell a} C_{\ell}^{TT}$
 - b_{la} : weighted combination of scanning beams in DetSet,
 - ω_{a^2} : encodes scanning strategy (<u>assumed to vary slowly across the sky</u>)
- Temperature + Polarisation QuickPol (New in DR3!):
 - + $\mathbf{C}'_{\ell} = \sum_{\mathfrak{s} \mathfrak{i} \mathfrak{j}} \mathbf{\Omega}_{\mathfrak{s} \mathfrak{i} \mathfrak{j}} \circledast \mathbf{B}_{\ell \mathfrak{s} \mathfrak{i}}^{*t} \cdot \mathbf{C}_{\ell} \cdot \mathbf{B}_{\ell \mathfrak{s} \mathfrak{j}}$
 - **C** : 3x3 *C*(*l*) matrix
 - ▶ **B** : weighted scanning polarised beams in DetSet
 - Ω : encodes scanning strategy weighted by map-making IQU inverse covariance matrix can be based on a subset of pixels !
 - provides effective beam window matrix We describing Ce coupling
 - extended to gain and polar efficiency uncertainty
 - Backward C(I) fitting can then still be used as a rain check to detect/catch remaining systematics

Hivon, Mottet & Ponthieu, 2017

&=

Map(s) Power Spectra

 \tilde{C}^{EE}_{ℓ} \tilde{C}^{BB}_{ℓ}

 \tilde{C}_{ℓ}^{TE}

 \tilde{C}^{ℓ}_{ℓ}

 \tilde{C}_{ℓ}^{EB} \tilde{C}_{ℓ}^{ET} \tilde{C}_{ℓ}^{BT}

 $\tilde{\gamma BE}$

100-1a: $\langle \cos \psi \rangle$

100-1a: $\langle \cos 2\psi \rangle$

Sky Power Spectra

$$W_{l}^{XY,TT} = \sum_{s} \sum_{j_{1},j_{2}} \begin{pmatrix} \hat{\Omega}_{00}^{s} \hat{b}_{l,s}^{(j_{1})*} \hat{b}_{l,s}^{(j_{2})} \\ \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-22}^{s} \hat{b}_{l,s-2}^{(j_{2})}) + \hat{b}_{l,s-2}^{(j_{1})*} (\hat{\Omega}_{2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} - \hat{\Omega}_{-22}^{s} \hat{b}_{l,s-2}^{(j_{2})}) + \hat{b}_{l,s-2}^{(j_{1})*} (\hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{0-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{02}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{02}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{0-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) + i \hat{b}_{l,s-2}^{(j_{1})*} (\hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{-20}^{s} \hat{b}_{l,s+2}^{(j_{1})*} + \hat{\Omega}_{20}^{s} \hat{b}_{l,s-2}^{(j_{1})}) \\ - \hat{b}_{l,s}^{(j_{2})} (\hat{\Omega}_{-20}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{20}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{-20}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{20}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-2}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}$$

TT column of beam window matrix

$$p^{\text{Stree}} \text{polar efficiency} \\ \rho^{\text{St}_{1,3}^{(b)}} = \left[b_{1,2}^{(b)} + b_{1,2}^{(b)}$$

Elements of the beam matrix W^ℓ

What if the beam transfer functions are wrong ?

- Allowing flexibility in TT transfer function, with Λ-CDM model
 3 dof (polynomial) at each of the 3 frequencies
 - if $A_{lens} = I$:
 - cosmological parameters:
 I σ change for A_s and n_s,
 slight change (< I σ) for others
 - transfer functions: common modes
 - \bullet if A_{lens} is free :
 - Alens remains at 1.24,
 - cosmological parameters: unchanged, with larger errors for A_s and n_s,
 - transfer functions: unchanged,
 - better χ^2

Error propagation in Planck-HFI

 MonteCarlo simulations of QuickPol are run quickly with the following uncertainties on each detector

beam measurements:

- * detector scanning $b\ell_m$ from MC observation of planets,
- > gain calibration (g):
 - ★ Gaussian distributed (GD) around nominal value (1.0),
 - * $\delta g = 0.1\%$ @ 100-217GHz,
- polar efficiency (ρ), 0 < ρ_{SWB} < ρ_{PSB} < 1
 - \star GD around IMO value,
 - * $\delta \rho$ = a few 0.1% (read from Rosset+2010),
- polarisation orientation (ψ):
 - \star GD around IMO value,
 - * $\delta \psi = 1 \text{ deg}$ for PSB, 5 deg for SWB (adapted from Rosset+2010).

are well below (<10⁻³) the TE or EE signals

are well below (<10⁻³) the TE or EE signals

Are the beams copolar ? beam preserves polarisation $\widetilde{Q} = \widetilde{I}$

A copolar beam preserves polarisation

How about actual scanning beams?

Conclusion

- CMB measurements prone to many sources of systematic errors in beams transfer functions
 - beam shape, gain calibration, polarisation efficiency, polarisation angle ...
 - ▶ and also: Far Side Lobes, ...
- They have been addressed via
 - modelling and correction,
 - template regression,
 - mitigation, or
 - marginalisation.
- cosmological parameters appear stable with respect to these systematics