New Observational Windows for Probing Hidden Dark Sectors
The Challenges with the WIMP DM Paradigm

The WIMP Miracle!

\[\Omega_X \propto \langle \sigma_{\text{ann}} v \rangle^{-1} \]

\[\sim 0.1 \left(\frac{G_{\text{Fermi}}}{G_X} \right)^2 \left(\frac{M_{\text{weak}}}{m_X} \right)^2 \]

WIMP Miracle!
The Challenges with the WIMP DM Paradigm

- But no convincing signal yet: many years, many experiments...

\[\Omega_\chi \propto \left\langle \sigma_{\text{ann}} v \right\rangle^{-1} \]
\[\sim 0.1 \left(\frac{G_{\text{Fermi}}}{G_\chi} \right)^2 \left(\frac{M_{\text{weak}}}{m_\chi} \right)^2 \]

WIMP Miracle!
The Challenges with the WIMP DM Paradigm

• But no convincing signal yet: many years, many experiments…

• Expand the theoretical vision: beyond the WIMP paradigm
 light DM, axion, PBH, non-minimal thermal dark sector ★…

• Exciting new pheno: DUNE, CMB-S4, structure formation…
Simple Variations of WIMP Miracle

• Decouple DM thermal relic abundance from DM coupling to the SM
Simple Variations of WIMP Miracle

• Decouple DM thermal relic abundance from DM coupling to the SM

 e.g. *Secluded Dark Matter*
 (Pospelov, Ritz, Voloshin 2007)

Safely evades direct detection, subject to indirect detection
A New Realization of WIMP DM Miracle

- **Determines** Ω_{DM}!

 WIMP miracle intact!

 $$\Omega_{\chi} \propto \langle \sigma_{\text{ann}} v \rangle^{-1}$$

- All conventional searches absent/suppressed

Not just “WIMP”, applies to thermal freeze-out of DM with general masses!
A New Realization of WIMP DM Miracle

- **Determines** Ω_{DM}!
 - WIMP miracle intact!
 - $\Omega_X \propto \langle \sigma_{ann} v \rangle^{-1}$
- *All* conventional searches absent/suppressed

What is X?

- $m_X \gtrsim \text{eV}: \Omega_X > 1 \implies$ deplete X via annihilation \rightarrow SM
 - Novel signal: **Boosted DM (X)!** (Vs. “slow” DM)
 - at **neutrino experiments** (*YC* w/Agashe, Necib, Thaler; *YC* w/Berger, Zhao)
 - $m_X \lesssim \text{eV}: \Omega_X \checkmark$ X-SM interaction not necessary
 - \implies relativistic, **dark radiation** in the CMB (*YC* w/Chacko, Hong, Okui)
A New Realization of WIMP DM Miracle

Weak signal ✓

C T

DM scatt

= >

free ➔

N

A, N

1 year

⌫

scatt, A, C, EN e

⌫

:

<

8 (a

Dark matter lives in a

A New Realization

Not just “WIMP”, applies to thermal freeze-out of DM with general masses!

• Determines \(\Omega_{DM} \)!

WIMP miracle intact!

\(\Omega_X \propto \langle \sigma_{\text{ann}} v \rangle^{-1} \)

• All conventional searches absent/suppressed

\[\begin{align*}
X & \quad \text{(stable)} \\
X & \quad \text{WIMP DM} \\
X & \quad \text{WIMP DM}
\end{align*} \]

\[\begin{align*}
\text{Not just “WIMP”, applies to thermal freeze-out of DM with general masses!}
\end{align*} \]

• What is \(X \)?

\[\begin{align*}
\text{m}_X \geq \text{eV}: \Omega_X > 1 \quad & \text{deplete } X \text{ via annihilation} \rightarrow \text{SM} \\
\text{Novel signal: Boosted DM (} X \text{)! (Vs. “slow” DM)} \\
\text{at neutrino experiments} & \quad (YC \text{ w/Agashe, Necib, Thaler; YC w/Berger, Zhao}) \\
\text{m}_X \leq \text{eV}: \Omega_X \checkmark \quad & \text{X-SM interaction not necessary} \\
& \quad \text{relativistic, dark radiation in the CMB} \quad (YC \text{ w/Chacko, Hong, Okui})
\end{align*} \]

Dark matter lives in a non-minimal hidden sector!

(a thermal bath of DM, X, +...) Hidden dark sector freezeout
A Hidden Dark Sector?

Rising interest, covers a great variety of DM models: atomic DM, mirror world DM, SIDM, twin Higgs DM, DDDM...

What can possibly live in the mysterious $\sim 25\%$ of our universe?
A Hidden Dark Sector?

Rising interest, covers a great variety of DM models:

atomic DM, mirror world DM, SIDM, twin Higgs DM, DDDM…

What can possibly live in the mysterious \(\sim 25\% \) of our universe?

- Too “complicated”? Occam’s razor?

Occam’s Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)
A Hidden Dark Sector?

Rising interest, covers a great variety of DM models:
atomic DM, mirror world DM, SIDM, twin Higgs DM, DDDM…

What can possibly live in the mysterious ~25% of our universe?

‣ Too “complicated”? Occam’s razor?

Occam’s Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)
A Hidden Dark Sector?

Rising interest, covers a great variety of DM models:
atomic DM, mirror world DM, SIDM, twin Higgs DM, DDDM…

What can possibly live in the mysterious ~25% of our universe?

‣ Too “complicated”? Occam’s razor?

‣ No clue? “Nightmare” for discovery?

Occam’s Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.
(William of Occam)
A Hidden Dark Sector?

Rising interest, covers a great variety of DM models:

atomic DM, mirror world DM, SIDM, twin Higgs DM, DDDM…

What can possibly live in the mysterious ~ 25% of our universe?

❖ Too “complicated”? Occam’s razor?

❖ No clue? “Nightmare” for discovery?

✓ Universal guidelines
✓ New observational windows!

(this talk…)

Occam’s Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)
Episode- #1

Boosted Dark Matter

JCAP 1410 (2014) 062, **YC** w/Agashe, Necib, Thaler;
JCAP 1502 (2015), **YC** w/Berger, Zhao;
YC et al. w/Microboone/DUNE collaboration *(in progress)*

• Massive X

\[(DM \rightarrow DM A, X \rightarrow DM B)\]
Boosted Dark Matter

- Determines Ω_{DM}!
- Conventional signals absent/suppressed

$\nu_{\text{DM}}/c \ll 1$

Boosted X: $\gamma_X = m_{\text{DM}}/m_X$

$\nu_X/c \simeq O(0.1)$

$\nu_{\text{DM}}/c < 1$
Boosted Dark Matter

DM

\[v_{\text{DM}}/c \ll 1 \]

X

(\text{stable})

DM

\[\gamma_X = m_{\text{DM}}/m_X \]

\[v_X/c \gtrsim O(0.1) \]

Boosted X:

- Massive X (\(m_{\text{DM}} > m_X \approx \text{eV} \)): \(\Omega_X > 1 \)
- deplete X via annihilation \(\rightarrow \) SM

• Determines \(\Omega_{\text{DM}}! \)
• Conventional signals absent/suppressed

L: loop size
\[D \ll ML^2 \]: the quadrupole moment
\[M \ll \mu L \]: the loop's mass

\[v_{\text{DM}}/c \ll 1 \]

X

SM

SM

+ X-SM scattering!
Boosted Dark Matter

- **Boosted X:**
 - Massive X ($m_{\text{DM}} > m_X \approx \text{eV}$): $\Omega_X > 1$
 - $\gamma_X = m_{\text{DM}}/m_X$
 - $v_X/c \gtrsim O(0.1)$
 - X deplete X via annihilation $\rightarrow \text{SM}$

- **Model Example**
 - Dirac fermion ψ_A, ψ_B, $m_A > m_B$, stabilized by $\mathbb{Z}_2 \times \mathbb{Z}_2$

\[
\mathcal{L} \supset \frac{1}{\Lambda^2} \bar{\psi}_A \psi_B \bar{\psi}_B \psi_A + \frac{\epsilon}{2} F_{\mu
u}^\prime F^\prime_{\mu\nu}
\]

- Determines Ω_{DM}!
- Conventional signals absent/suppressed

$\uparrow + \text{X-SM }$ scattering!
Search Strategy for Boosted DM

- A combination of DM indirect and direct detections
Search Strategy for Boosted DM

• A combination of DM indirect and direct detections

![Diagram of DM Indirect and Direct Detections]

Indirect

DM \rightarrow X

Direct

DM \rightarrow X
Search Strategy for Boosted DM

- A combination of DM indirect and direct detections

![Diagram showing indirect and direct detection processes]
Search Strategy for Boosted DM

- A combination of DM indirect and direct detections

Indirect

\[
\text{DM} \rightarrow X \rightarrow 1/\Lambda^2 \rightarrow X \rightarrow \text{DM}
\]

Direct

\[
\text{DM} \rightarrow X \rightarrow g' \rightarrow \gamma' \rightarrow e^- \rightarrow \text{DM}
\]

★ Small flux \(\propto n_{DM}^2 \)

What experiments?
Large volume detector + sensitive to energetic e\(^-\), p

★ Boosted X \(\rightarrow \) relativistic outgoing e\(^-\), p
Search Strategy for Boosted DM

- A combination of DM indirect and direct detections

★ Small flux $\propto n_{DM}^2$

What experiments?
Large volume detector + sensitive to energetic e^-, p

★ Boosted $X \Rightarrow$ relativistic outgoing e^-, p

Use neutrino experiments to directly detect a dark matter sector!
Search Strategy for Boosted DM

- A combination of DM indirect and direct detections

Indirect

DM \xrightarrow{1/\Lambda^2} \ X

Direct

\[g' \]

\[\gamma' \]

\[e^+ e^- \]

Small flux \(\propto n_{DM}^2 \)

Boosted X \(\rightarrow \) relativistic outgoing \(e^-, p \)

What experiments?
Large volume detector + sensitive to energetic \(e^-, p \)

Use neutrino experiments to directly detect a dark matter sector!

DM direct detection 😞 ; Opportunity:
low energy boosted DM \((E \approx O(GeV)) \)

(Cherry et.al 2015, **YC** w/Pospelov, Pradler arXiv:1711.04531)
Boosted DM@Neutrino Experiments

- Conventional: Cherenkov detectors; New: LArTpc

IceCube SuperK

DUNE/LBNF (major future project)
Boosted DM@Neutrino Experiments

- Conventional: Cherenkov detectors; New: LArTpc

IceCube SuperK

DUNE/LBNF (major future project)

- Boosted DM distinguishable from ν!
 - Directionality
 - No charge current interaction (e.g. muon veto)
Boosted DM@Neutrino Experiments

• Conventional: Cherenkov detectors; New: LArTpc

IceCube SuperK DUNE/LBNF (major future project)

• Boosted DM distinguishable from ν!
 ▷ Directionality
 ▷ No charge current interaction (e.g. muon veto)

Boosted DM: New scientific programs for neutrino experiments
Recent Development of Boosted DM

- Substantial recognition + action from major neutrino experimental collaborations
 - **SuperK**: official analysis on boosted DM (arxiv: 1711.05278)
 - **DUNE/Microboone**: a working group (theorists + experimentalists) developed since 2016, recently became a subgroup of DUNE BSM group; will contribute to DUNE TDR
 — We are focusing on high priority benchmarks now, but in the long term open to other related exotic DM signals observable (e.g. self-destructing DM, Grossman et al. arXiv:1712.00455)

- Theoretical development
 - Several groups involved: signals with DM direct detection, IceCube… (e.g. Jia, Seodong, Xiaoping here)
 - Inelastic Boosted DM (e.g. Giudice et al. arXiv:1712.07126)
Episode #2
Dark Radiation in the CMB
(YC w/Chacko, Hong, Okui; w/Adshead, Shelton; w/Brust, Sigurdson)

Case-2:
(nearly) Massless X

- $m_X \lesssim \text{eV}$: $\Omega_X \surd$, do not need further depletion/interaction w/SM!
Episode #2

Dark Radiation in the CMB

(YC w/Chacko, Hong, Okui; w/Adshead, Shelton; w/Brust, Sigurdson)

WIMP DM \[\xrightarrow{-\text{stable}}\] X

\[m_X \approx \text{eV}: \Omega_X \checkmark,\text{ do not need further depletion/interaction w/SM!}\]

Case-2: (nearly) Massless X

Nightmare for discovery? (gravity…)

\[\text{SM} \xrightarrow{\text{X}} \text{SM}\]
Episode #2

Dark Radiation in the CMB

(YC w/Chacko, Hong, Okui; w/Adshead, Shelton; w/Brust, Sigurdson)

Case-2:
(nearly) Massless X

\[m_X \approx \text{eV} \quad \Omega_X \checkmark \text{, do not need further depletion/interaction w/SM!} \]

\[X \text{ is relativistic, dark radiation in the Cosmic Microwave Background (CMB) !} \]
Beyond the SM particle w/m ≲ $T_{\text{CMB}} \sim \text{eV}$ (DR):

- Relativistic at CMB, $\rho_{\text{rad}} \uparrow$, $H_{\text{CMB}} \uparrow$
- Affect CMB spectrum by increasing effective neutrino number, ΔN_{eff} ($N_{\text{eff}} = 3.046$ in SM)
e.g. suppress high ℓ peak amplitude
Dark Radiation in the CMB

Beyond the SM particle $w/m \lesssim T_{\text{CMB}} \sim \text{eV}$ (DR):
- Relativistic at CMB, $\rho_{\text{rad}} \uparrow$, $H_{\text{CMB}} \uparrow$
- Affect CMB spectrum by increasing effective neutrino number, ΔN_{eff} ($N_{\text{eff}} = 3.046$ in SM)
 e.g. suppress high ℓ peak amplitude

Calculation of thermal dark radiation: (c.f. non-thermal later)

\[
\Delta N_{\text{eff}} = \rho_{\text{DR}} : \rho_{1\nu}, \quad \rho_{\text{DR}} \propto g_{\text{DR}} T_{\text{DR}}^4
\]

- g_{DR}: Number of degrees of freedom in DR
- T_{DR}: determined by when DS and SM kinetically decouple

Initial thermal (kinetic) equilibrium ⇥ effective portal
interaction between DS and SM (e.g. higgs portal)
Dark Radiation in the CMB

Phys.Rev. D92 (2015) 055033, **YC** w/Chacko, Hong, Okui
Dark Radiation in the CMB

A lower limit $\Delta N_{\text{eff}} \geq 0.027$

Phys. Rev. D92 (2015) 055033, YC w/Chacko, Hong, Okui
Dark Radiation in the CMB

A lower limit $\Delta N_{\text{eff}} \geq 0.027$

Forecast for CMB-S4 sensitivity: $\sigma(N_{\text{eff}}) \approx 0.015 - 0.03$

Phys.Rev. D92 (2015) 055033, YC w/Chacko, Hong, Okui

- Likely able to discover or exclude any hidden dark sector once in equilibrium with SM (CMB-S4!)

JHEP 1606 (2016) 016, YC w/Adshead, Shelton
Dark Radiation in the CMB
- Simply extra neutrinos?

• **Does dark radiation interact at the CMB time?**

 ‣ **Free-streaming DR:** $L_{\text{mean-free}} > H^{-1}$, e.g. SM neutrinos
 — Implicitly assumed in official expt. analysis (e.g. Planck)

 ‣ **Scattering (fluid-like) DR:** $L_{\text{mean-free}} < H^{-1}$, generic in a dark sector
 (e.g. dark gluons, dark photon+dark electrons)
 — Not included in expt. analysis! But…
Observable Difference Between the Two Types of DR

- Free streaming species: \(v_{FS} > v_{sound} \) \(\rightarrow \) \(\sigma \): anisotropy in \(T^{\mu \nu} \)
- Observable effects increase with FS energy fraction: \(f_\nu \equiv \frac{\rho_{all\ free\ rad}}{\rho_{all\ rad}} \)

\[
\ddot{d}_\gamma - c_\gamma^2 \nabla^2 d_\gamma = \nabla^2 \Phi_+
\]

\(\Delta N_{\text{scatt}}^{\nu,\text{eff}} \)

\(\Delta N_{\text{free}}^{\nu,\text{eff}} \)

\(\Delta \ell \equiv \delta \ell - \delta \ell_{\text{SM}} \)

\[
= -57 (f_\nu - f_\nu|_{\text{SM}}) \frac{\ell_A}{300} \\
\approx -7.8 (0.59 \Delta N_{\text{eff}}^{\text{free}} - 0.41 \Delta N_{\text{scatt}}^{\nu,\text{eff}}) \frac{\ell_A}{300}
\]

(YC, w/Chacko, Hong, Okui 2015)

Add free-streaming DR \(f_\nu \uparrow \)
Add scattering DR \(f_\nu \downarrow \)

Universal phase shift of high \(\ell \) peaks (SM \(\nu \): Bashinsky, Seljak 2003)

Gravitational forcing; w/anisotropy, e.g. \(d_\gamma \) out of phase w.r.t free oscillating
Cosmological Constraints on Interacting Light Particles

(YC with Brust and Sigurdson, JCAP, arXiv: 1703.10732)

- Two param fit: $N_{\text{fld}}, N_{\text{eff}}$
- More robust/physical param: $f_{\text{fs}}, N_{\text{tot}}$

Figure 2. Here we show two different 2d posteriors for three of the five scans (Planck T, Planck P+BAO, and Planck P+BAO+H_0+LSS). The solid lines are 1σ contours, and the dot-dashed lines are 2σ contours. The posteriors in the top figure exhibit degeneracy between N_{eff} and N_{fld}, motivating the parametrization in terms of N_{tot} and f_{fs} in the bottom figure, and demonstrating that the strongest constraints arise on the sum N_{tot}.

(also see: Baumann, Green, Meyers, Wallisch v2)

$\Delta N_{\text{tot}} < 0.39$ at 2σ
A Unified Picture of Thermal DM

• A universal guideline:

Last carrier of the dark sector entropy, e.g. the \(X \), analogous to SM \(\gamma, \nu \)! (generalized concept of dark radiation)
A Unified Picture of Thermal DM

- A universal guideline:
 Last carrier of the dark sector entropy, e.g. the X, analogous to SM γ, ν! (generalized concept of dark radiation)

T:
- Freezeout (decay)
- Entropy (heat up X)
- Relic dark radiation
- CMB ΔN_{eff}
- DM + X...

SM:
- Boosted DM
- Restore WIMP paradigm
A Unified Picture of Thermal DM

• A universal guideline:

Last carrier of the dark sector entropy, e.g. the X, analogous to SM γ, ν! (generalized concept of dark radiation)

T

DM+X... entropy (heat up X)

freezeout (decay)

X

freezeout (decay)

relic dark radiation

CMB ΔN_{eff}

SM

• X: subdominant abundance, $\Omega_X < \Omega_{DM}$ yet plays an important cosmological role!
• X: may be the smoking-gun for the whole dark sector! New observational directions!
Episode #3

Cosmological Signatures of DM-DR Interactions
(CMB, structure formation)

- YC w/Chacko, Hong, Okui and Tsai JHEP 1612 (2016) 108
- YC and Ran Huo, work in prep
Partially Acoustic DM (PAcDM)
YC with Chacko, Hong, Okui and Tsai, JHEP 1612 (2016)

Puzzles from Large Scale Structure

Comparing to ΛCDM model, we want to obtain a
- Smaller density perturbation
- Larger Hubble expansion rate at the late time universe

Poulin et. al. JCAP 1608 (2016)
A Dark Sector Offers a Solution?

- **Additional dark radiation** (DR) helps increase Hubble rate at recombination time: $H_0 \propto \sqrt{\rho}$

- **Dark acoustic oscillation**: coupled DM + DR prohibit growth of structure, reduce σ_8

 - 100% acoustic DM: too much suppression;
 - Other related approach:
Partially Acoustic Dark Matter
- A small fraction (r) of DM having acoustic oscillation

\[\frac{P(r)}{P(0)} \simeq (1 - 2r) \left(\frac{a}{a_{eq}} \right)^{-1.2r} \]

- **analytic solution**

- **Structure grows** slower comparing to CDM
- **Redshift dependent suppression (a modified power law!)**
 Smaller correction to the CMB spectrum vs. 100% AcDM

Recent: may not fully address both σ_8 and H_0, Raveri et al. 2017
Visualizing Invisibly Annihilating DM (IAnDM)

YC with Ran Huo, work in prep

The theoretically minimal, observationally challenging dark sector scenario (IAnDM):

• Thermal relic of DR X (N_{fld}, N_{eff} or f_{fs}, N_{tot}) can be very suppressed for very decoupled, colder dark sector
• Direct smoking-gun signature from the DM invisible annihilation itself? (analogy to DM indirect detection)
 - the non-thermal injection of DR X ($E_X = m_{DM}$)
• Scale-dependent ΔN_{eff} : accumulation of DR from DM annihilation over time

- Effects on matter power spectrum (WDM-like but distinguishable)
Conclusion

• Hidden Thermal Dark Sectors:
 ‣ Well motivated: resembles SM, solutions to naturalness problem…
 ‣ A simple variation to WIMP paradigm: DM → stable X annihilation, dramatically different/challenging phenomenology!
 ‣ Systematic studies possible, despite complexity!

• New Observational Windows for Dark Sectors:
 ‣ Secondary stable dark state X as the smoking gun: Boosted DM (neutrino expts., DM direct detection); interacting dark radiation (CMB, DM direct detection)
 ‣ Imprints of DM-X interaction: structure formation, CMB (e.g. PAcDM, IAnDM)
Thank you!