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Cosmic structure is a relic of quantum fluctuations during inflation
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The specific pattern on large angular scales is an intact image of a 
primordial quantum state

Its correlations contain information about the quantum state
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Standard quantum inflation: perturbations freeze out from infinite, 
independent plane wave mode amplitudes of a quantum field 
vacuum on constant time hypersurfaces 

This quantum model might be wrong

Causal diagram of  an 
inflationary universe observer world line

end of inflation

constant-time 
hypersurface“freeze out” when 

wavelength ~ horizon 

horizon
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“If it is true that vacuum fluctuations include virtual black holes, then the 
structure of space-time is radically different from what is usually thought.” 
—- G. ’t Hooft,  Found Phys (2018) 48:1134 

Black hole horizons are nonlocal, coherent quantum objects

Black hole information theory suggests that quantum geometry 
is radically different from quantum fields

Geometrical information is nonlocal and holographic

III

III
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Penrose diagram of an eternal black hole, 
adapted  from 1605.05119 

horizon



Standard decoherence on light cones:  nonlocal but causal 

Quantum state of “two” photons lives on a light cone  
Spooky coherence extends indefinitely on a  light cone 
Quantum geometry should have the same structure 
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that can be combined into a quantity that scales like ✏ijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧

+ and ⌧
� denote a�ne parameters along the path

in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x

+
i (⌧) and x

�
i (⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,

although below we will assume a planar apparatus for simplicity. The functions x
+
i (⌧) and x

�
i (⌧) can be visualized as

the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x

+
i (⌧)

and x
�
i (⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent

vector to the path in each direction is @x
±
j /@⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA
+
i /d⌧ = ✏ijk[x+

k (⌧)dx
+
j /d⌧ ] (27)

dA
�
i /d⌧ = ✏ijk[x�

k (⌧)dx
�
j /d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA
⇥
i /d⌧ = ✏ijk

1

2
[dx

+
j /d⌧ + dx

�
j /d⌧ ][x+

k (⌧) � x
�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA

±
i (⌧)/d⌧ , x

±
k (⌧) and dx

±
j /d⌧ combine

into a function of ⌧ that depends on the exotic correlation ✏ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA

±
/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path

on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓

0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓
0, and the swept area via

dA
±

/d⌧ = sin ✓
0
dA

±
/dt = R(⌧) sin ✓

0
, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x
2
?i1/2

R(⌧) sin ✓
0 = `P R(⌧) sin ✓

0
. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA
+
/d⌧ + dA

�
/d⌧ |, (33)

World line of PET scan sample
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PET detector= causal surface 



If inflation is like a black hole, 

The inflationary horizon is a coherent quantum object

Perturbations = quantum noise in the emergence of locality

They have nonlocal holographic correlations everywhere on 
the horizon

Decoherence happens on causal diamonds, not field modes

6



tI

𝒪(t0)

ℋ

r𝒪

In holographic inflation, perturbations freeze out on the horizon ℋ

𝒪

States do not collapse on infinite 
spacelike hypersurfaces 

Perturbations are nonlocally 
entangled on the horizon

potential is indeterminate inside the horizon, classical outside



Power spectrum is standard  

Post-inflation evolution of each mode is standard 

Everything that only depends on the power spectrum stays 
the same in holographic inflation

But now quantum modes are globally entangled  

Primordial phases of relic modes in different directions are 
globally correlated



Does the real universe behave in this strange way? 

Maybe a holographic pattern is staring us in the face! 
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CMB temperature ~   nearly-intact primordial pattern 

A holographic information deficit requires new symmetries of 
angular structure at large angular separation



Perturbations are constrained by causal symmetries 

Example: incoming quantum phase information  determines  polar 
values of potential along any given axis on the horizon  

It only reaches the equatorial plane at the end of inflation, so it 
cannot  affect the potential for points in that plane  

Mean curvature on any great circle is uncorrelated with the 
sum of its polar values

Predicted symmetry: angular correlation function  

 

vanishes at 90 degrees

 

Another example: antipodal antisymmetry like black holes leads to 

   

CT(Θ) ≡ ⟨δTaδTb⟩∠ab=Θ

CT(90∘) = 0

CT(180∘) < 0



CMB anomalies after Planck 8
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Figure 3. Angular two-point correlation function as observed by Planck [7]. The full
black line and the shaded regions are the expectation from 1000 SMICA simulations
based on the ⇤CDM model and the 68% and 95% confidence regions. The plot also
shows four colored lines that fall on top of each other and represent the result of the
Planck analysis of the Commander, SEVEM, NILC and SMICA maps at resolution
Nside = 64. While the measured two-point correlation is never outside the 95%
confidence region, the surprising feature is that we observe essentially no correlations
at 70� < ✓ < 170� and a significant lack of correlations at ✓ > 60�.

0.5% have been obtained, some even below 0.01%. An important question is the size of

the mask used in the analysis. It has been shown in [37] that most of the large-angle

correlations in reconstructed sky maps are between pairs of points at least one of which

is in the part of the sky that is most contaminated by the Galaxy. This is in line with the

findings of [32], where it was shown that more conservative masking makes the lack of

correlation even more significant. This by itself already signifies a violation of isotropy.

Undoubtedly, S1/2 is an ad hoc and a posteriori statistic, but it captures naturally

the observed feature originally noted in COBE. Several a posteriori “improvements”

have been suggested [39, 7]. For example, in order to avoid the argument that µ = 1/2

has been fixed after the fact one might let µ vary. But now the look elsewhere e↵ect

must be taken into account. The Planck team implemented such an analysis which (in

our convention) returns global p-values of the order of 2%. However, this global Sµ

statistic addresses a di↵erent question, namely how likely is it that there is a lack of

correlation for an arbitrary µ. Thus we cannot argue that this statistic is better than

S1/2, all we can say is that it is di↵erent.
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The Astrophysical Journal Supplement Series, 192:17 (19pp), 2011 February 1 BENNETT ET AL.
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Figure 5. Angular correlation function of the full-sky WMAP ILC map is shown
(heavy black curve). For comparison, the angular correlation function for the
best-fit ΛCDM model is also shown (thin black curve), along with the associated
68% and 95% confidence ranges, as determined by Monte Carlo simulations.
The angular correlation function of the full-sky map is seen to be within the 95%
confidence range of the best-fit ΛCDM model. This angular correlation function
was computed from the Cl power spectrum, but is nearly indistinguishable from
a pixel pair computation. Either way, there is no evidence of a lack of large-scale
power.

C(θ ) can be estimated by averaging all temperature pairs in the
sky separated by an angle θ :

C(θ ) = ⟨TiTj ⟩| ̸ ij=θ , (8)

where the brackets indicate an average over directions i and j
such that ̸ ij = θ (to within a bin). Another approach is to
estimate the angular power spectrum Cl and to compute C(θ )
using Equation (7).

The angular correlation function over the full-sky ILC map
from Equation (7) is shown in Figure 5. As can be seen, C(θ ) lies
within the 95% confidence range of the best-fit ΛCDM model for
all θ , as determined by Monte Carlo simulations. This supports
the conclusion that there is no statistically significant lack of
large-scale power on the full sky.

Spergel et al. (2003) applied the pixel-pair estimator to the
first-year WMAP data and found an almost complete lack
of correlated structure at angles >60◦ for the sky, but that
calculation was with a Galactic foreground cut. A foreground
cut was made because of the concern that additional power
from within the Galactic cut may arise from foregrounds. For
regions outside the cut, it was appreciated that systematic errors
and residual Galactic foregrounds are far more likely to add
correlated power to the sky maps than to remove it. They
quantified the lack of large-angular-scale power in terms of
the statistic

S1/2 ≡
∫ 1/2

− 1
C2(θ )d cos θ (9)

and found that fewer than 0.15% of simulations had lower values
of S1/2. A low S1/2 value persists in later WMAP sky maps.

Copi et al. (2007) and Copi et al. (2009) claimed that
there is evidence that the WMAP temperature fluctuations
violate statistical isotropy. They directly computed the angular
correlation function from pixel pairs, as in Equation (8), omitting
from the sum pixel pairs where at least one pixel was within the
foreground mask. The KQ85 foreground mask (at that time)

removed 18% of the pixels from the full sky (now 22% for
KQ85y7), while KQ75 removed 29%. Copi et al. found p -values
of ≈ 0.03% for their computation of S1/2, concluding that the
data are quite improbable given the model. The exact p -value
depended on the specific choice of CMB map and foreground
mask. Cayón (2010) finds no frequency dependence to the
effect.

Efstathiou et al. (2010) find that the value of S1/2 is sensitive to
the method of computation. For example, Efstathiou et al. (2010)
computed the angular correlation function using the estimator

C(θ ) = 1
4π

∑

ll′

(2l + 1)M− 1
ll′ C̃l′Pl(cos θ ) (10)

where

Mll′ = 1
2l + 1

∑

mm′

|Klml′m′ |2 (11)

and Klml′m′ is the coupling between modes (lm) and (l′m′)
induced by the sky cut, and C̃l′ is the pseudo-power spectrum
obtained by transforming the sky map into spherical harmonics
on the cut sky. This estimator produced a significantly larger
value for S1/2 than the estimator in Equation (6).

Efstathiou et al. (2010) also reconstructed the low-l multi-
poles across the foreground sky cut region in a manner that was
numerically stable, without an assumption of statistical isotropy.
Their method relied on the fact that the low multipole WMAP
data are signal dominated and that the cut size is modest. They
showed that the small reconstruction errors introduce no bias
and they did not depend on assumptions of statistical isotropy
or Gaussianity. The reconstruction error only introduced a small
“noise” to the angular correlation function without changing its
shape.

The original use of a sky cut in calculating S1/2 was motivated
by concern for residual foregrounds in the ILC map. We now
recognize that this precaution was unnecessary as the ILC
foreground residuals are relatively small. Values of S1/2 are
smaller on the cut sky than on the full sky, but since the full
sky contains the superior sample of the universe and the cut sky
estimates suffer from a loss of information, cut sky estimates
must be considered sub-optimal. It now appears that the Spergel
et al. (2003) and Copi et al. (2007, 2009) low p -values result from
both the a posteriori definition of S1/2 and a chance alignment of
the Galactic plane with the CMB signal. The alignment involves
Cold Spot I and the northern tips of the other fingers and can
also be seen in the maps that will be discussed in Section 7.

Efstathiou et al. (2010) corrected the full-sky WMAP ILC map
for the estimated ISW signal from redshift z < 0.3 as estimated
by Francis & Peacock (2010). The result was a substantial
increase in the S1/2. Yet there is no large-scale cosmological
significance to the orientation of the sky cut or the orientation
of the local distribution of matter with respect to us; thus the
result from Spergel et al. and Copi et al. must be influenced by
a chance alignment of the ISW effect and a posterior statistical
bias in the choice of statistic.

More generally, Hajian et al. (2005) applied their bipolar
power spectrum technique and found no evidence for a violation
of statistical isotropy at 95% CL for angular scales correspond-
ing to multipole moments l < 60.

The low value of the S1/2 integral over the large-angle
correlation function on the cut-sky results from a posterior
choice of the statistic. Further, it is a sub-optimal statistic in
that it is not computed over the full sky. There is evidence for a
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WMAP (Bennett et al. 2011) 
Planck, 1506.07135 

Predicted independent of the unmeasured dipole 

Is it true for the actual sky? 

WMAP and Planck do not agree in detail 

Test requires new attention to foreground masking

CT(90∘) = 0



Poster session (Hagimoto, Lewin, Hogan, Meyer):  
“Symmetries of CMB Correlation at Large Angular Separation” 

New estimates of WMAP and Planck temperature anisotropy without 
masking bias agree  with the predicted symmetry,
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               ,  
to within about  

C(90∘) = 0
±1μK2

(small masks)

miracle or 
symmetry?

(no masks)



Summary
The standard quantum model of inflation might be wrong 

Famous “information paradoxes” in black hole theory can be 
resolved if  horizons are coherent quantum objects 

Similar holographic coherence on the inflationary horizon 
agrees with standard cosmological measurements 

It leads to  perturbations with new, unique symmetries that can 
be (but have not yet been) rigorously examined in CMB 
anisotropy and large scale galaxy surveys   

It might be possible to measure analogous effects in the 
laboratory  (see talk by Kwon in the other session)
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