Dark Radiation & Superheavy Dark Matter from Black Hole Domination

Sam McDermott

Cosmic Controversies, Oct 7 2019

1905.01301 (with Dan Hooper and Gordan Krnjaic) (+ongoing...)



Cold Dark Matter? Explanation of Cosmic Acceleration? Transformation of Inflation into a fundamental theory? Multiverse or not? Dark Matter particle or not? More for cosmology to learn from particle physics? Critical tools

Cold Dark Matter? Explanation of Cosmic Acceleration? Transformation of Inflation into a fundamental theory? Multiverse or not? Dark Matter particle or not? More for cosmology to learn from particle physics? Critical tools Thermal relic or not?

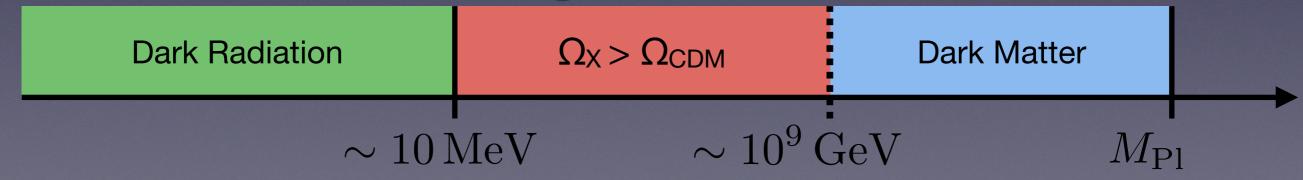
The Origin of (Particle) Species

Thermal Relic

The Early Universe
Kolb & Turner

The Origin of (Particle) Species

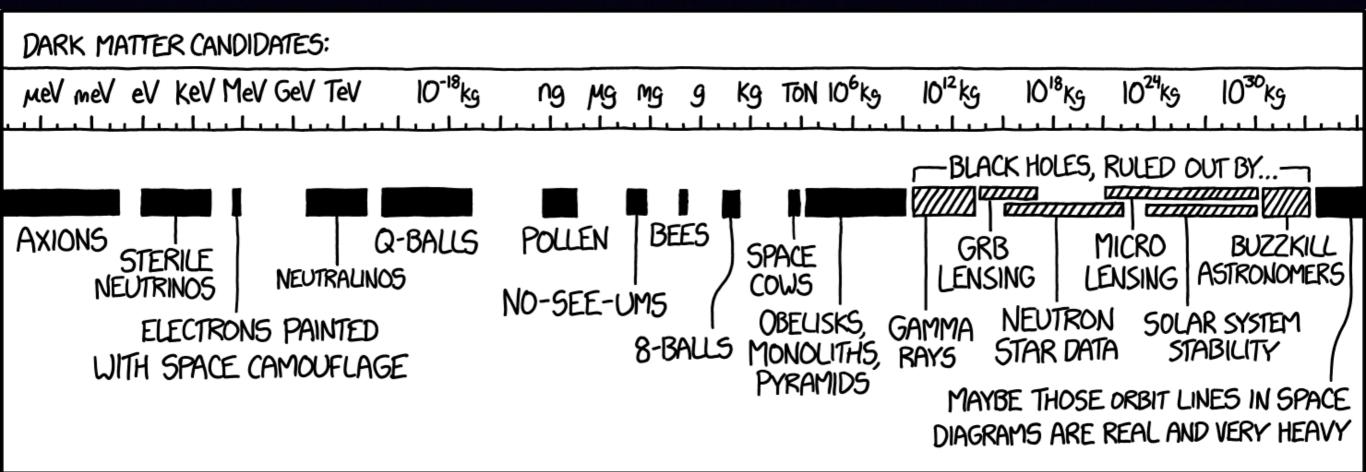
Thermal Relic



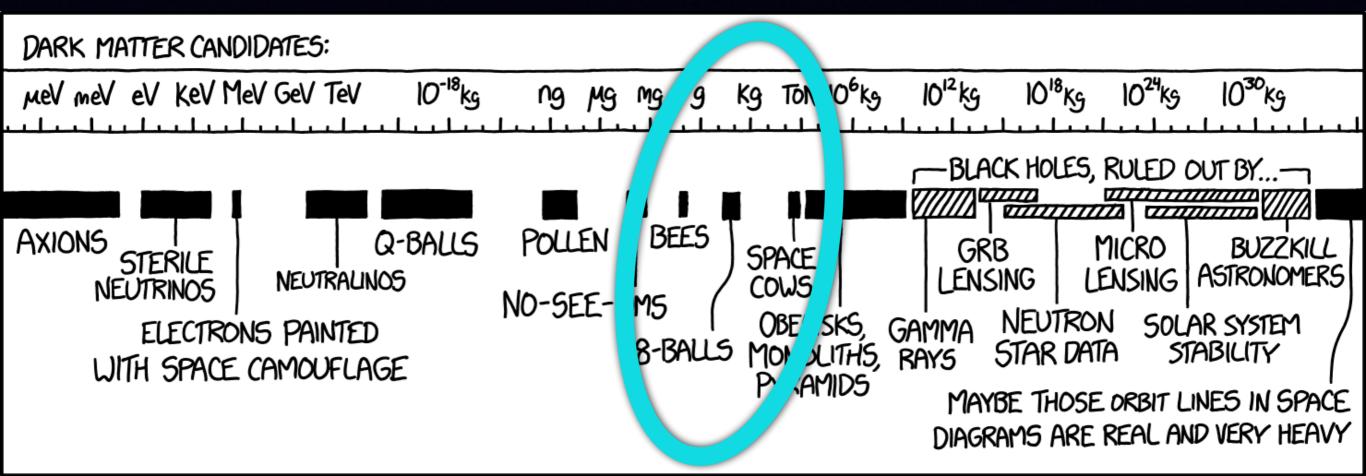
The Origin of (Particle) Species

Thermal Relic

Hawking Radiation



Outline


- 1. The Mass Range of Primordial Black Holes
- 2. Dark Radiation
- 3. Superheavy Dark Matter
- 4. Concluding Comments

Outline

- 1. The Mass Range of Primordial Black Holes
- 2. Dark Radiation
- 3. Superheavy Dark Matter
- 4. Concluding Comments

https://xkcd.com/2035/

https://xkcd.com/2035/

 Every black hole emits like a blackbody at a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

 Every black hole emits like a blackbody at a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

• For $M_{BH} \sim M_{\odot}$, $T_{BH} \sim 10^{-20} \; GeV$

 Every black hole emits like a blackbody at a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

- For $M_{BH} \sim M_{\odot}$, $T_{BH} \sim 10^{-20} \; GeV$
- For M_{BH} ~ 10⁸ gram, T_{BH} ≫ TeV

Black Hole Evaporation

Evaporation rate formula (Hawking 1974):

$$\frac{dM_{\rm BH}}{dt} = -\frac{\mathcal{G} g_{\star,H}(T_{\rm BH}) M_{\rm Pl}^4}{30720 \pi M_{\rm BH}^2}$$

$$\simeq -7.6 \times 10^{24} \,\mathrm{g \, s^{-1}} \, g_{\star,H}(T_{\rm BH}) \left(\frac{\mathrm{g}}{M_{\rm BH}}\right)^2$$

Black Hole Evaporation

Evaporation rate formula (Hawking 1974):

$$\frac{dM_{\rm BH}}{dt} = -\frac{\mathcal{G} g_{\star,H}(T_{\rm BH}) M_{\rm Pl}^4}{30720 \pi M_{\rm BH}^2}$$

$$\simeq -7.6 \times 10^{24} \,\mathrm{g \, s^{-1}} \, g_{\star,H}(T_{\rm BH}) \left(\frac{\mathrm{g}}{M_{\rm BH}}\right)^2$$

For g_{★,H} constant with M_{BH}, this integrates:

$$M_{\rm BH}(t) = M_i \left(1 - \frac{t}{\tau}\right)^{1/3}$$
 $\tau \approx 0.4 \,\mathrm{s} \,\left(\frac{M_i}{10^9 \,\mathrm{g}}\right)^3 \left(\frac{108}{g_{\star,H}(T_{\rm BH})}\right)$

• Since $\tau \sim s \times (M_i/10^9 g)^3$:

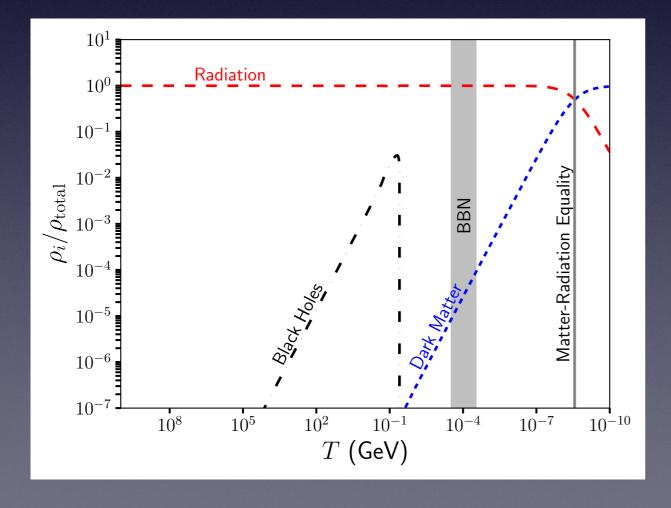
- Since $\tau \sim s \times (M_i/10^9 g)^3$:
 - t_{univ} ~ 10¹⁸ s ⇒ black holes as (component of) stable relic DM must have M_i ≥ 10¹⁵ g

- Since $\tau \sim s \times (M_i/10^9 g)^3$:
 - $t_{univ} \sim 10^{18} \, s \Longrightarrow black holes as (component of) stable relic DM must have <math>M_i \gtrsim 10^{15} \, g$
 - intermediate mass black holes constrained by CMB (Poulin et al. 1610.10051 & JCAP; Stöcker et al. 1801.01871 & JCAP) and BBN (Kohri and Yokoyama astro-ph/9908160 & PRD; Carr et al. 0912.5297 & PRD)

- Since $\tau \sim s \times (M_i/10^9 g)^3$:
 - $t_{univ} \sim 10^{18} \, s \Longrightarrow black holes as (component of) stable relic DM must have <math>M_i \gtrsim 10^{15} \, g$
 - intermediate mass black holes constrained by CMB (Poulin et al. 1610.10051 & JCAP; Stöcker et al. 1801.01871 & JCAP) and BBN (Kohri and Yokoyama astro-ph/9908160 & PRD; Carr et al. 0912.5297 & PRD)
 - black holes with M_i ≤ 10⁹ g evaporate pre-BBN

- Since $\tau \sim s \times (M_i/10^9 g)^3$:
 - $t_{univ} \sim 10^{18} \, s \Longrightarrow black holes as (component of) stable relic DM must have <math>M_i \gtrsim 10^{15} \, g$
 - intermediate mass black holes constrained by CMB (Poulin et al. 1610.10051 & JCAP; Stöcker et al. 1801.01871 & JCAP) and BBN (Kohri and Yokoyama astro-ph/9908160 & PRD; Carr et al. 0912.5297 & PRD)
 - black holes with M_i ≤ 10⁹ g evaporate pre-BBN
- Can M_i ≤ 10⁹ g black holes impact our universe?

Black Hole Energy Density

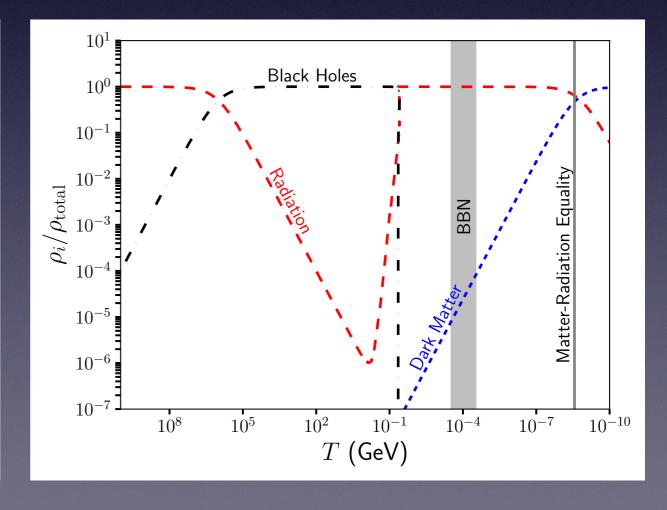

 ρ (SM) rad ~ a^{-4} , ρ DM ~ a^{-3}

because of this, black holes will grow in relative importance over cosmic time

Black Hole Energy Density

 $\rho(SM) \text{ rad } \sim a^{-4}, \rho_{DM} \sim a^{-3}$

no domination


Black Hole Energy Density

 $\rho(SM)$ rad ~ a^{-4} , ρ_{DM} ~ a^{-3}

no domination

Radiation 100 100-1 100-2 100-3 100-4 100-5 100-6 100-6 100-6 100-7 100-8

black hole domination

Black Hole Reheating

$$T_{\tau} \simeq 40[50] \,\text{MeV} \left(\frac{10^8 \,\text{g}}{M_i}\right)^{3/2} \left(\frac{g_{\star,H}(T_{\text{BH}})}{108}\right)^{1/2} \left(\frac{14}{g_{\star}(T_{\tau})}\right)^{1/4}$$

 It's possible that black holes are the dominant source of the stuff in the universe

Black Hole Reheating

$$T_{\tau} \simeq 40[50] \,\text{MeV} \left(\frac{10^8 \,\text{g}}{M_i}\right)^{3/2} \left(\frac{g_{\star,H}(T_{\text{BH}})}{108}\right)^{1/2} \left(\frac{14}{g_{\star}(T_{\tau})}\right)^{1/4}$$

- It's possible that black holes are the dominant source of the stuff in the universe
- Doesn't matter for the Standard Model thermal equilibrium established before BBN

Black Hole Reheating

$$T_{\tau} \simeq 40[50] \,\text{MeV} \left(\frac{10^8 \,\text{g}}{M_i}\right)^{3/2} \left(\frac{g_{\star,H}(T_{\text{BH}})}{108}\right)^{1/2} \left(\frac{14}{g_{\star}(T_{\tau})}\right)^{1/4}$$

- It's possible that black holes are the dominant source of the stuff in the universe
- Doesn't matter for the Standard Model thermal equilibrium established before BBN
- Implications for dark sector?

Outline

- 1. The Mass Range of Primordial Black Holes
- 2. Dark Radiation
- 3. Superheavy Dark Matter
- 4. Concluding Comments

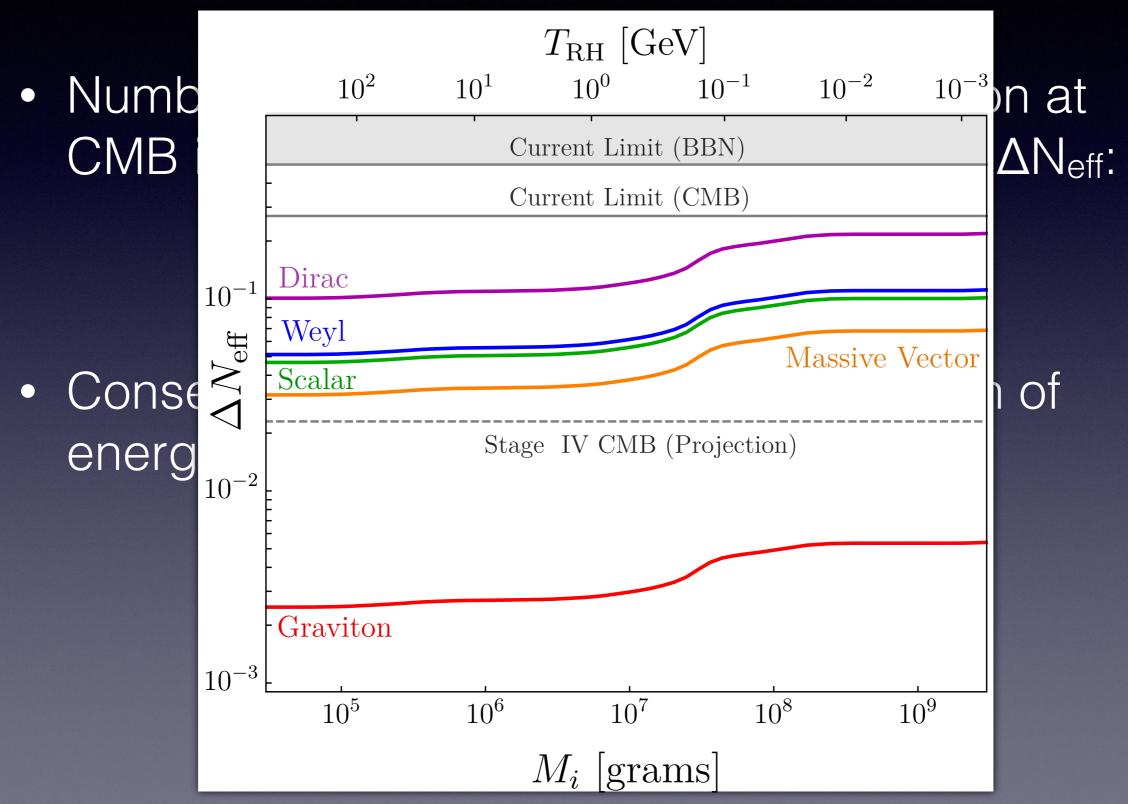
 Number of degrees of freedom in radiation at CMB is conventionally parameterized by ΔN_{eff}:

$$\Delta N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_X(T_{\rm CMB})}{\rho_\gamma(T_{\rm CMB})}$$

• Number of degrees of freedom in radiation at CMB is conventionally parameterized by ΔN_{eff} :

$$\Delta N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_X(T_{\rm CMB})}{\rho_\gamma(T_{\rm CMB})}$$

 Conservation of entropy and equipartition of energy (modulo graybody factors) gives:


$$\Delta N_{\text{eff}} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{g_{H,X}}{\sum_{i \in \text{SM}} g_{H,i}} \frac{g_{*,\text{SM}}(T_{\text{RH}})}{2} \left(\frac{g_{*S}^{\text{CMB}}}{g_{*S}^{\text{RH}}}\right)^{4/3}$$

 Number of degrees of freedom in radiation at CMB is conventionally parameterized by ΔN_{eff}:

$$\Delta N_{
m eff} \equiv rac{8}{7} \left(rac{11}{4}
ight)^{4/3} rac{
ho_X(T_{
m CMB})}{
ho_\gamma(T_{
m CMB})}$$

 Conservation of entropy and equipartition of energy (modulo graybody factors) gives:

$$\Delta N_{\rm eff} \approx 0.10 \left(\frac{g_{\rm DR,H}}{4}\right) \left(\frac{106}{g_{\star}(T_{\rm RH})}\right)^{1/3}$$

How light must such a state be to be radiation?

$$\begin{split} \left\langle E_{\mathrm{DR}} \right\rangle \bigg|_{\mathrm{EQ}} &\simeq \alpha \, T_{\mathrm{BH},i} \times \frac{T_{\mathrm{EQ}}}{T_{\mathrm{RH}}} \left(\frac{g_{\star}(T_{\mathrm{EQ}})}{g_{\star}(T_{\mathrm{RH}})} \right)^{1/3} \\ &\simeq 3.9 \, \mathrm{MeV} \left(\frac{\alpha}{3.15} \right) \left(\frac{M_i}{10^8 \, \mathrm{g}} \right)^{1/2} \left(\frac{108}{g_{\star,H}(T_{\mathrm{BH}})} \right)^{1/2} \left(\frac{14}{g_{\star}(T_{\mathrm{RH}})} \right)^{1/12} \end{split}$$

How light must such a state be to be radiation?

$$\langle E_{\rm DR} \rangle \bigg|_{\rm EQ} \simeq \alpha \, T_{\rm BH,i} \times \frac{T_{\rm EQ}}{T_{\rm RH}} \left(\frac{g_{\star}(T_{\rm EQ})}{g_{\star}(T_{\rm RH})} \right)^{1/3}$$

$$\simeq 3.9 \, {\rm MeV} \left(\frac{\alpha}{3.15} \right) \left(\frac{M_i}{10^8 \, {\rm g}} \right)^{1/2} \left(\frac{108}{g_{\star,H}(T_{\rm BH})} \right)^{1/2} \left(\frac{14}{g_{\star}(T_{\rm RH})} \right)^{1/12}$$

Outline

- 1. The Mass Range of Primordial Black Holes
- 2. Dark Radiation
- 3. Superheavy Dark Matter
- 4. Concluding Comments

Black hole has a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

Black hole has a temperature (Bekenstein 1973; Hawking 1974):

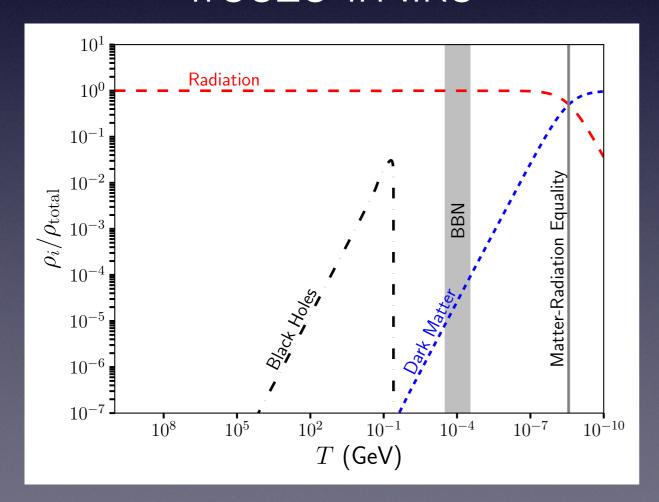
$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

As M_{BH} decreases, T_{BH} increases

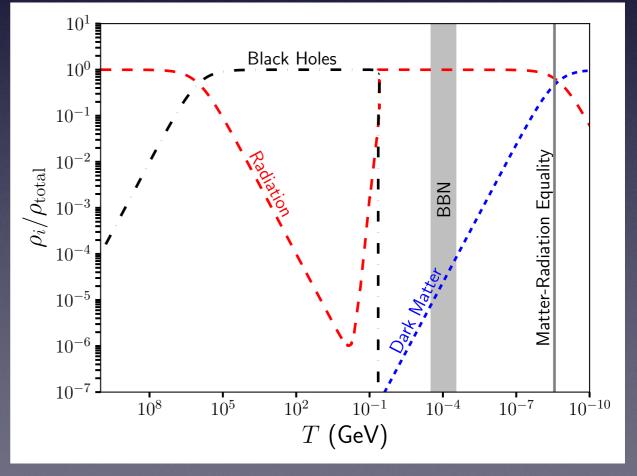
Black hole has a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

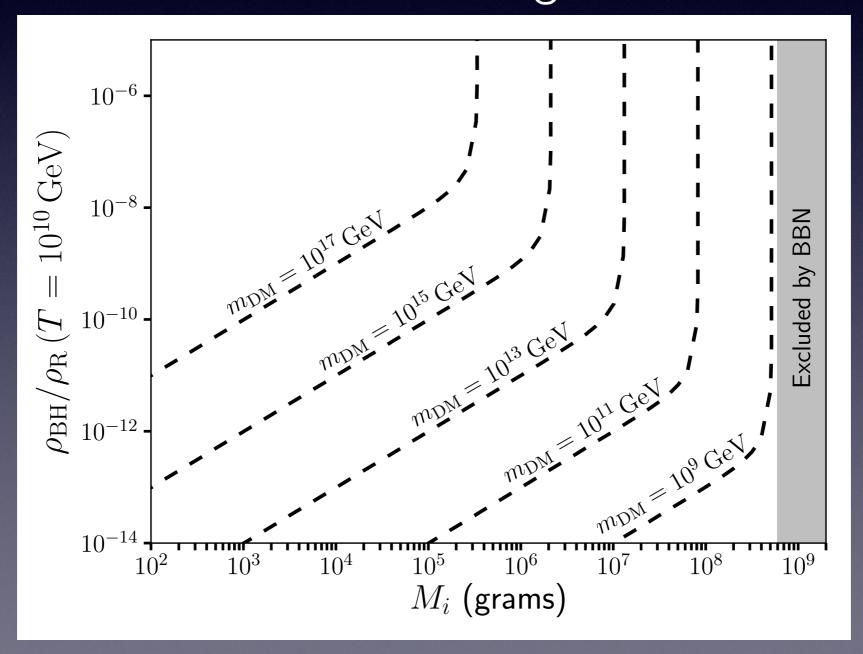
- As M_{BH} decreases, T_{BH} increases
- Continues until $T_{BH} \sim M_{Pl}$ (at which point Hawking's calculation breaks down)

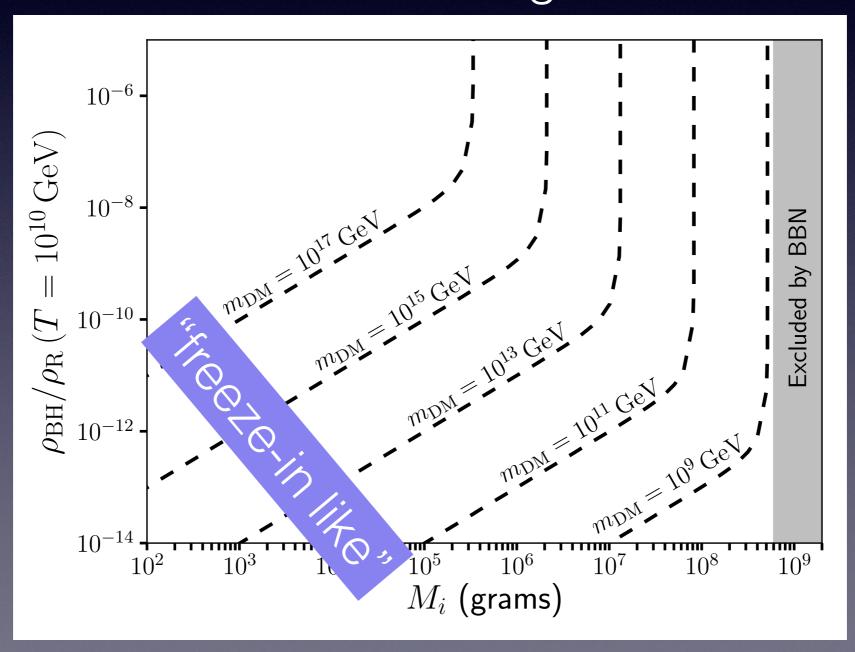

Black hole has a temperature (Bekenstein 1973; Hawking 1974):

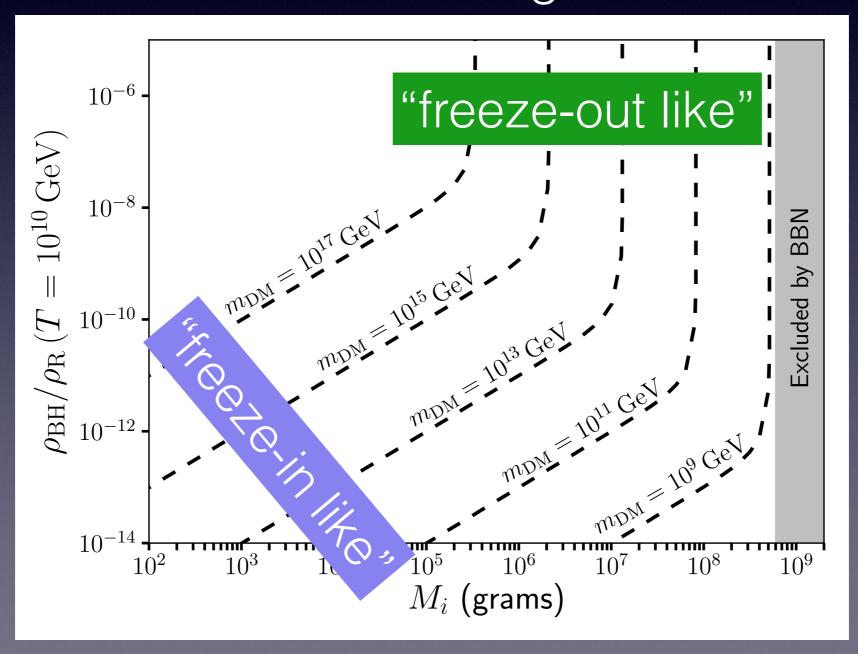
$$T_{\mathrm{BH}} = \frac{M_{\mathrm{Pl}}^2}{8\pi M_{\mathrm{BH}}}$$


- As M_{Bh}
- Contin Hawkir
- Eventually, particles of any sub-Planck scale
- mass can be produced in Hawking evaporation!

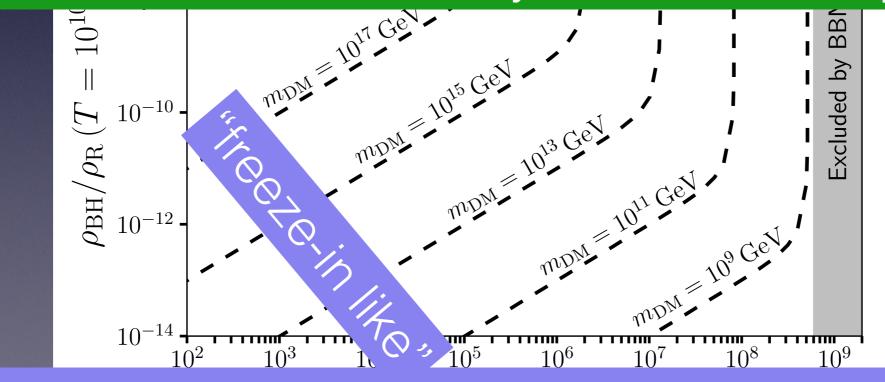
Two different regimes:


(see also Morrison et al., 1812.10606) "freeze-in like"


(see also Lennon et al., 1712.07664)
"freeze-out like"


Two different regimes:

Two different regimes:


Two different regimes:

Two different regimes:

η_b needs to be accounted for by black hole evap. as well

η_b can be set by initial conditions / very early universe

Outline

- 1. The Mass Range of Primordial Black Holes
- 2. Dark Radiation
- 3. Superheavy Dark Matter
- 4. Effects on BBN and CMB
- 5. Concluding Comments

(Very) early universe conditions:

(Very) early universe conditions:

formation of binaries

(Very) early universe conditions:

- formation of binaries
- gravitational wave inspiral

(Very) early universe conditions:

- formation of binaries
- gravitational wave inspiral
- accretion of SM stuff

Accretion

Bondi-Hoyle accretion...

Bondi, 1952 MNRAS

$$\frac{dM_{\rm BH}}{dt}\bigg|_{\rm Accretion} = \frac{4\pi\lambda M_{\rm BH}^2 \rho_R}{M_{\rm Pl}^4 (1+c_s^2)^{3/2}}$$

Accretion

Bondi-Hoyle accretion...

Bondi, 1952 MNRAS

$$\frac{dM_{\rm BH}}{dt} \bigg|_{\rm Accretion} = \frac{4\pi\lambda M_{\rm BH}^2 \rho_R}{M_{\rm Pl}^4 (1 + c_s^2)^{3/2}}$$

...slowing / halting the evaporation process?

$$\frac{dM_{\rm BH}}{dt} = \frac{\pi \mathcal{G}g_{*,H}(T_{\rm BH})T_{\rm BH}^2}{480} \left[\frac{\lambda g_*(T_R)}{\mathcal{G}g_{*,H}(T_{\rm BH})(1+c_s^2)^{3/2}} \left(\frac{T_R}{T_{\rm BH}} \right)^4 - 1 \right]$$

Future Directions

- Interesting possibility for a "nightmare-scenario" decoupled dark sector
- Potentially observable in CMBS4
- Early-universe physics can be treated in greater depth in UV-complete scenarios
- Possibilities for more extended hidden sectors?

Thanks!

Extra

- 1. Mass Function
- 2. Effects on BBN and CMB

Black hole mergers

Binary capture in the early universe...

$$\sigma_{\rm bc} = \pi \left(\frac{85\pi}{3}\right)^{2/7} r_{\rm Schw}^2 v^{-18/7}$$

Quinlan and Shapiro, 1989 ApJ

Binary Formation During Black Hole Domination

Binary capture in the early universe...

$$\sigma_{\rm bc} = \pi \left(\frac{85\pi}{3}\right)^{2/7} r_{\rm Schw}^2 v^{-18/7}$$

Quinlan and Shapiro, 1989 ApJ

Black hole domination:

$$\frac{\Gamma}{H} \sim \frac{
ho_{
m BH} M_{
m BH}}{M_{
m Pl}^4} \frac{M_{
m Pl}}{\sqrt{
ho_{
m BH}}} \sim \sqrt{\frac{
ho_{
m BH}}{M_{
m Pl}^4}} \frac{M_{
m BH}}{M_{
m Pl}}$$

Binary Formation During Black Hole Domination

Binary capture in the early universe...

$$\sigma_{\rm bc} = \pi \left(\frac{85\pi}{3}\right)^{2/7} r_{\rm Schw}^2 v^{-18/7}$$

Quinlan and Shapiro, 1989 ApJ

Black hole domination:

$$rac{\Gamma}{H}\simrac{
ho_{
m BH}M_{
m BH}}{M_{
m Pl}^4}\,rac{M_{
m Pl}}{\sqrt{
ho_{
m BH}}}\sim \sqrt{rac{
ho_{
m BH}}{M_{
m Pl}^4}}\, M_{
m Pl}$$
 can be ~1

Binary Formation During Black Hole Domination

Binary capture in the early universe...

$$\sigma_{\rm bc} = \pi \left(\frac{85\pi}{3}\right)^{2/7} r_{\rm Schw}^2 v^{-18/7}$$

Quinlan and Shapiro, 1989 ApJ

Black hole domination:

$$\frac{\Gamma}{H} \sim \frac{\rho_{\rm BH} M_{\rm BH}}{M_{\rm Pl}^4} \frac{M_{\rm Pl}}{\sqrt{\rho_{\rm BH}}} \sim \sqrt{\frac{\rho_{\rm BH}}{M_{\rm Pl}^4}} \frac{M_{\rm BH}}{M_{\rm Pl}}$$
 always $\gg 1$

Binary Formation During Radiation Domination

Binary capture in the early universe...

 $\sigma_{
m bc} = \pi \left(\frac{85\pi}{3}\right)^{2/7} r_{
m Schw}^2 v^{-18/7}$

Quinlan and Shapiro, 1989 ApJ

$$\frac{\Gamma_{\rm bc}}{H} \approx 0.02 \times \left(\frac{M_{\rm BH}}{10^8 \, {\rm g}}\right) \left(\frac{T_{\rm eff}}{10^7 \, {\rm GeV}}\right)^2 \left(\frac{v}{10^{-5}}\right)^{-11/7} \left(\frac{\rho_{\rm BH}}{\rho_{\rm tot}}\right)^2$$

Inspiral

Binary capture in the early universe...

Quinlan and Shapiro, 1989 ApJ

$$\sigma_{\rm bc} = \pi \left(\frac{85\pi}{3}\right)^{2/7} r_{\rm Schw}^2 v^{-18/7}$$

$$\frac{\Gamma_{\rm bc}}{H} \approx 0.02 \times \left(\frac{M_{\rm BH}}{10^8 \, {\rm g}}\right) \left(\frac{T_{\rm eff}}{10^7 \, {\rm GeV}}\right)^2 \left(\frac{v}{10^{-5}}\right)^{-11/7} \left(\frac{\rho_{\rm BH}}{\rho_{\rm tot}}\right)$$

...leading to mergers?

$$t_{\rm insp} = \frac{5a_0^4}{512G^3 M_{\rm BH}^3}$$
 $\frac{t_{\rm insp}}{\tau} \simeq 10 \times \zeta^4 \left(\frac{10^8 {\rm GeV}}{T_{\rm eff}}\right)^8 \left(\frac{10^8 {\rm g}}{M_{\rm BH}}\right)^6$

Black hole has a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

Black hole has a temperature (Bekenstein 1973; Hawking 1974):

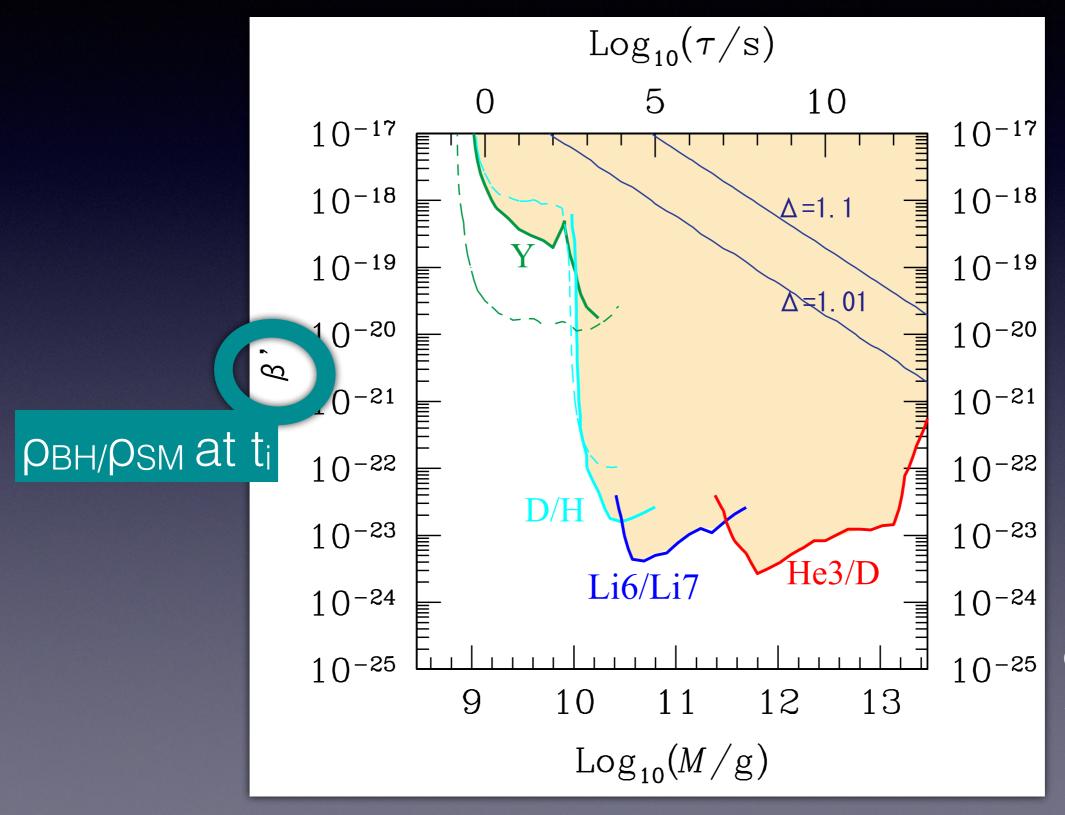
$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

As M_{BH} decreases, T_{BH} increases

Black hole has a temperature (Bekenstein 1973; Hawking 1974):

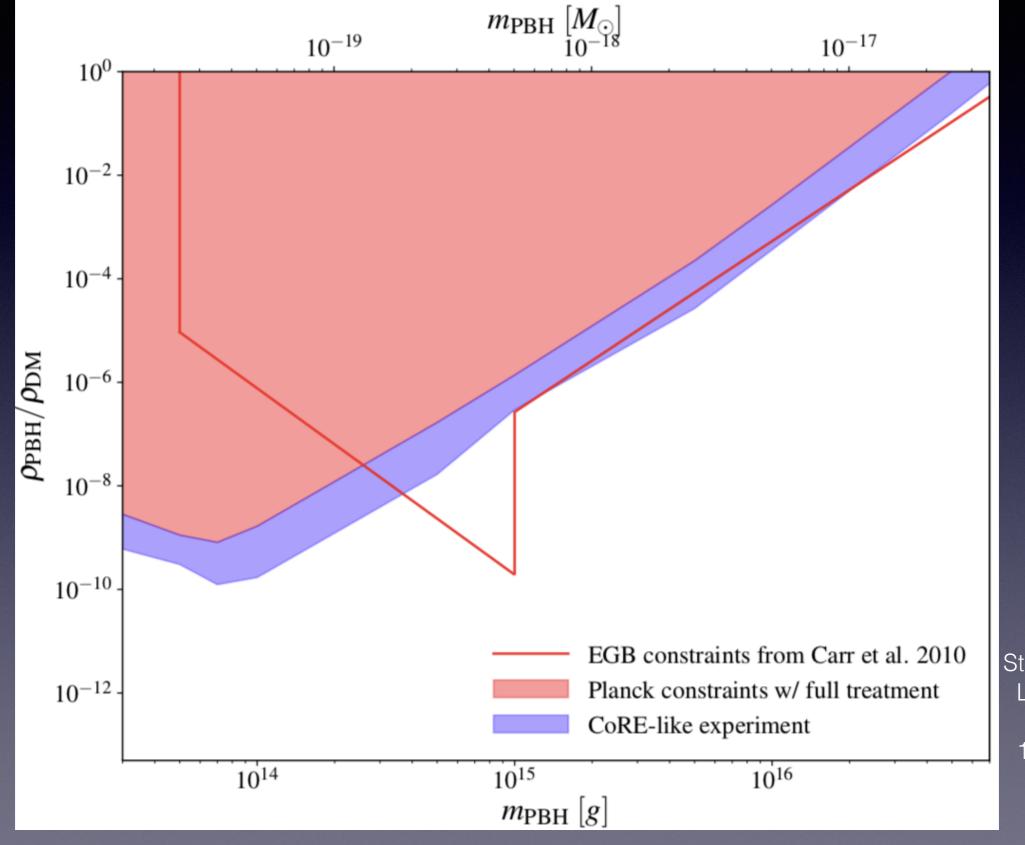
$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}}$$

- As M_{BH} decreases, T_{BH} increases
- Continues until $T_{BH} \sim M_{Pl}$ (at which point Hawking's calculation breaks down)


Black hole has a temperature (Bekenstein 1973; Hawking 1974):

$$T_{\mathrm{PH}} - \frac{M_{\mathrm{Pl}}^2}{M_{\mathrm{Pl}}}$$

High energy particles


- As M_E (strongly interacting or not) can impact n/p freezeout, Continuation break up nuclei, etc.!
- Hawk

Results

Carr, Kohri, Sendouda, Yokoyama, 0912.5297 & PRD

Stöcker, Krämer, Lesgourgues, Poulin, 1801.01871 & JCAP

Next Steps

Updated observations and nuclear rates

Next Steps

- Updated observations and nuclear rates
- Effects on CMB spectral distortions

Next Steps

- Updated observations and nuclear rates
- Effects on CMB spectral distortions
- Large number of extra sectors (N-naturalness)
 - will change the mass / lifetime relation
 - smaller fraction of energy going to SM stuff