FINDING TYPE Ia SUPERNOVAE WITH THE SUBARU STRATEGIC PROGRAM

Clare Saunders
LPNHE, Princeton

Nao Suzuki, Naoki Yasuda, and the HSC Transient Team
IPMU, Tokyo

David Rubin
University of Hawaii

Nicolas Regnault, Pierre Astier, Marc Betoule, Sebastien Bongard
LPNHE, Paris

October 3, 2019
Supernova Cosmology Analysis Meeting, KICP
WHAT IS THE SUBARU STRATEGIC PROGRAM (SSP)?

• Imaging survey in grizy with the Hyper Suprime-Cam on the Subaru Telescope on Mauna Kea.

• Primary science goals: weak lensing, high-redshift galaxies, galaxy evolution.
• Cadenced observations of the Deep and Ultradeep fields allow for SN search.

• Existing catalogs of spec- and photo-zs reduce amount of followup needed.
OBSERVATION FIELDS

Yasuda+ 2019
SCIENCE GOALS:

Redshift range targeted by SSP

Projected numbers for two seasons on the COSMOS field:

- $z < 0.8$: 120
- $0.8 < z < 1.1$: 120
- $z > 1.1$: 50 (with HST IR)
CANDIDATE FOLLOWUP STRATEGY

• Hubble Space Telescope WFC3:
 • Used to get an IR measurement at peak for the highest redshift objects.
 ➡ this allows for color at maximum.

• Ground based spectroscopy:
 • VLT, Keck, Subaru, etc.
 1. Live spectrum for certain objects.
 2. Spec-z of host later on.
 • Also benefitting from AAT fiber spectrograph.

• Future: Subaru Prime Focus Spectrograph
DATA PROCESSING

• Dual Pipelines:

 • IPMU uses Princeton Pipeline — being developed as a branch of the LSST pipeline.

 • Forced photometry on subtractions to produce lightcurves

 • LPNHE uses an independent pipeline descended from the SNLS pipeline, which can be used for testing different techniques and validating the calibration.

 • Scene-modeling to produce lightcurves
KEY PIPELINE IMPROVEMENTS

• Astrometry tied to the Gaia DR2 catalog
 ➡ residual floor at 6-8 milliarcsec

• Photometry tied to the JLA catalog, and will be tied to SNLS5 (tied to CALSPEC with 80 visits)
 ➡ uniformity at 0.2%

• Incorporation of the Brighter-fatter PSF anomaly underway.
CURRENT STATUS

Original Program:

• Spring 2017: 24 epochs observing on COSMOS

• Spring 2018: 6 epochs on COSMOS—not enough for good lightcurves, but observations can be used for references.

Extended Program:

• Fall 2018: Volcano! SXDS observations cancelled

• Fall 2019: Beginning observation on SXDS/XMM-LSS
WHAT DO WE HAVE SO FAR?

• $z < 1.0$: 130+ SNe Ia in the COSMOS UltraDeep field
• $z > 1.0$: 60+ SNe Ia in the COSMOS UltraDeep field
• 200+ more in the COSMOS Deep field
• HST triggered on 26 $z > 1$ events
• 60+ spectra taken of SNe or hosts to obtain redshifts, plus more underway.
PRELIMINARY RESULTS:
BEAUTIFUL LIGHTCURVES AT $z \sim 0.5$
PRELIMINARY RESULTS:
BEAUTIFUL LIGHTCURVES AT $z \sim 0.7$
PRELIMINARY RESULTS:
BEAUTIFUL LIGHTCURVES AT $z \sim 0.9$

$$z = 0.6778 \pm 0.0011$$
$$k = 5778.39 \pm 0.34$$
$$x_0 = (2.500 \pm 0.051) \times 10^{-6}$$
$$x_1 = 0.88 \pm 0.79$$
PRELIMINARY RESULTS: BEAUTIFUL LIGHTCURVES AT $z \sim 1.1$
PRELIMINARY RESULTS:
BEAUTIFUL LIGHTCURVES AT $z \sim 1.3$
PRELIMINARY RESULTS:
BEAUTIFUL LIGHTCURVES AT $z \sim 1.5$

$z = 1.49 \pm 0.11$

$c = 0.03 \pm 0.13$

$\delta = 0.07871 \pm 0.24$

$m_{\text{mag}} = 0.017464660$

$m_{\text{mag}0} = 3.1000000$

$x_0 = (6.2 \pm 1.5) \times 10^{-7}$

$x_1 = -0.11 \pm 0.089$
CONCLUSIONS

• 200+ SNe Ia observed, with 60+ at z > 1.0, plus more in the COSMOS Deep field

• The Fall season on SXDS / XMM-LSS is underway

• Number of SNe Ia expected to double with a second full season.

• Release of data from the completed half of the survey planned in the following months.