When Stars Attack!

Confirmation, Identification, and Localization of Recent Near-Earth Supernovae

Brian Fields
Astro & Physics, U Illinois

John Ellis
CERN

Brian Fry
Illinois

Ada Ertel
Illinois

Jesse Miller
Illinois

Midwest SN @ Chi. 26 Feb 2019
Nearby SNe are Inevitable
Shklovskii 1968; BDF 2004; Krishnan, Sovgut, Trauth, & BDF 2019 in prep

Rate of Supernovae inside r:

$$\text{SN Rate}(<r) \sim (10 \text{ Myr})^{-1} \left(\frac{r}{30 \text{ pc}} \right)^3$$
Nearby SNe are Inevitable
Shklovskii 1968; BDF 2004; Krishnan, Sovgut, Trauth, & BDF 2019 in prep

Rate of Supernovae inside \(r \):

\[
\text{SN Rate}(< r) \sim (10 \text{ Myr})^{-1} \left(\frac{r}{30 \text{ pc}} \right)^3
\]
Nearby SNe are Inevitable
Shklovskii 1968; BDF 2004; Krishnan, Sovgut, Trauth, & BDF 2019 in prep

Rate of Supernovae inside r:

\[\text{SN Rate}(< r) \sim (10 \text{ Myr})^{-1} \left(\frac{r}{30 \text{pc}} \right)^3 \]

- multiple events < few pc in the last 4.5 Gyr!
- biological impact can be severe if < 10 pc!

Thomas, Melott, Overholt group; Gehrels 2003
Nearby Supernovae Rain Ejecta on Earth

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015
Nearby Supernovae Rain Ejecta on Earth

SN eject plows thru interstellar matter

Earth shielded by solar wind
Nearby Supernovae Rain Ejecta on Earth

SN eject plows thru interstellar matter

Earth shielded by solar wind

If blast close enough:
• plasma pushes to inner Solar System

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015
Nearby Supernovae Rain Ejecta on Earth

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

SN eject plows thru interstellar matter

Earth shielded by solar wind

If blast close enough:
- plasma pushes to inner Solar System
Nearby Supernovae Rain Ejecta on Earth

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

SN eject plows thru interstellar matter

Earth shielded by solar wind

If blast close enough:
- plasma pushes to inner Solar System
- dust decouples, rains on Earth
- SN dust accumulates in deep ocean
Q: How would we know?
The Smoking Gun: Radioactivity

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

Q: How would we know?

Need observable SN “fingerprint”

Nuclear Signature
The Smoking Gun: Radioactivity

Q: How would we know?

Need observable SN “fingerprint”

Nuclear Signature

★ Stable nuclides: don’t know came from SN
The Smoking Gun: Radioactivity

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

Q: How would we know?

Need observable SN “fingerprint”

Nuclear Signature

★ Stable nuclides: don’t know came from SN
★ Live radioactive isotopes: none left on Earth
 If found, must come from SN!
The Smoking Gun: Radioactivity

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

Q: How would we know?

Need observable SN “fingerprint”

Nuclear Signature

★ Stable nuclides: don’t know came from SN
★ Live radioactive isotopes: none left on Earth
If found, must come from SN!

^{60}Fe $t_{1/2} = 2.6 \text{ Myr}$

also, e.g., ^{26}Al, ^{97}Tc, ^{244}Pu?
Radioactivity Detection: 60Fe

Radioactivity Detection: 60Fe

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry:
 live 60Fe!
Radioactivity Detection: ^{60}Fe

Knie et al. (2004)

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry: live ^{60}Fe!

^{60}Fe abundance

time before present [Myr]
Radioactivity Detection: 60Fe

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry: live 60Fe!

Background: 60Ni

60Fe abundance vs. time before present [Myr]

60Fe/Fe
Radioactivity Detection: 60Fe

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry:
 live 60Fe!

60Fe abundance

Background: 60Ni

Time before present [Myr]
Radioactivity Detection: 60Fe

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry: live 60Fe!

Background: 60Ni

60Fe abundance

time before present [Myr]
Radioactivity Detection: 60Fe

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry: live 60Fe!

$t = 2.8 \pm 0.4$ Myr

Background: 60Ni

Woo hoo!
Radioactivity Detection: ^{60}Fe

Ferromanganese crust
Pacific Ocean
✓ slow growth ~ 1 mm/Myr
✓ accelerator mass spectrometry:
 live ^{60}Fe!

$t = 2.8 \pm 0.4$ Myr

Background: ^{60}Ni

Note AMS sensitivity!
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe}\) yield
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe}\) yield

\[D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}} \]
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe}\) yield

\[D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}} \]

\(^{60}\text{Fe}\) Suspects:
Explosion Distance
Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe}\) yield

\[D \sim \sqrt{M_{60,\text{eject}} / N_{60,\text{obs}}} \]

\(^{60}\text{Fe}\) Suspects:

core-collapse supernova
Explosion Distance
Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe}\) yield

\[D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}} \]

\(^{60}\text{Fe}\) Suspects:

core-collapse supernova Type Ia supernova
Explosion Distance
Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe} \) yield

\[D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}} \]

\(^{60}\text{Fe} \) Suspects:

- core-collapse supernova
- Type Ia supernova
- AGB star
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around: "radioactivity distance" from ^{60}Fe yield

\[D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}} \]

^{60}Fe Suspects:

- core-collapse supernova
- Type Ia supernova
- AGB star
- NS merger
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,\text{eject}}}{D^2} \]

Turn the problem around:
“radioactivity distance” from \(^{60}\text{Fe}\) yield

\[D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}} \]

\(^{60}\text{Fe}\) Suspects:
- core-collapse supernova
- Type Ia supernova
- AGB star
- NS merger
- impactor

Jesse Miller
Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence:

\[N_{60,\text{obs}} \sim \frac{M_{60,eject}}{D^2} \]

Turn the problem around: “radioactivity distance” from \(^{60}\text{Fe}\) yield

\[D \sim \sqrt{\frac{M_{60,eject}}{N_{60,\text{obs}}}} \]

\(^{60}\text{Fe}\) Suspects:

- core-collapse supernova
- Type Ia supernova
- AGB star
- NS merger
- impactor

Verdict: Core Collapse ~30-150 pc

Jesse Miller
New Data, New Probes, New Sites
New Data, New Probes, New Sites

★ New crust data Wallner+ 2016
– consistency check
New Data, New Probes, New Sites

★ New crust data Wallner+ 2016
 – consistency check

★ Ocean sediment data Ludwig+ 2016; Wallner+ 2016
 – faster growth rate ~ 1 mm/kyr
 – much improved time resolution
 – magnetic microfossils!
New Data, New Probes, New Sites

New crust data Wallner+ 2016
- consistency check

Ocean sediment data Ludwig+ 2016; Wallner+ 2016
- faster growth rate ~ 1 mm/kyr
- much improved time resolution
- magnetic microfossils!
New Data, New Probes, New Sites

★ New crust data Wallner+ 2016
 – consistency check

★ Ocean sediment data Ludwig+ 2016; Wallner+ 2016
 – faster growth rate ~ 1 mm/kyr
 – much improved time resolution
 – magnetic microfossils!

★ Lunar cores!
 – ^{60}Fe excess over cosmic-ray production
60Fe Sample Sites
Before

^{60}Fe data, first clear detection

$60\text{Fe/Fe} [1 \times 10^{-15}]$ vs. Time [Myr ago]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Earth and Lunar 60Fe Data

$60^{Fe}/Fe \times 10^{-15}$

Time [Myr ago]

Ada Ertel
Confirmation of 60Fe crust signal at 2-3 Myr
confirmation of 60Fe crust signal at 2-3 Myr
another signal at ~8 Myr? ...now confirmed
$^{60}\text{Fe flux duration } \sim 1 \text{ Myr}$
$^{60}\text{Fe flux}$ duration ~ 1 Myr

far exceeds Sedov prediction!?! Fry+ 2015
60Fe flux duration ~ 1 Myr

far exceeds Sedov prediction?!? Fry+ 2015

probes dust evolution & dynamics? Fry, Ertel + 2017

![Graph showing Fe concentration over time](image)
CONCLUSION
CONCLUSION

THIS IS A THING

new probe for astronomy, astrophysics, geology, biology…
Outlook
Outlook

Live ^{60}Fe seen globally and on the Moon
Outlook

Live 60Fe seen globally and on the Moon
- signal in deep ocean crusts, nodules, sediments find
- confirmed pulse ~ 2-3 Myr ago
- evidence for pulse at ~ 8 Myr
- 60Fe pulse duration ~ 1 Myr ??
- evidence for lunar signal—directionality?
- Source of Local Bubble?
Outlook

Live ^{60}Fe seen globally and on the Moon

- signal in deep ocean crusts, nodules, sediments find
- confirmed pulse $\sim 2-3$ Myr ago
- evidence for pulse at ~ 8 Myr
- ^{60}Fe pulse duration ~ 1 Myr ?!
- evidence for lunar signal—directionality?
- Source of Local Bubble?

Birth of “Supernova Archaeology”

Implications across disciplines:
- nucleosynthesis, cosmic dust, stellar evolution, bio evolution, astrobiology
Outlook

Live 60Fe seen globally and on the Moon
★ signal in deep ocean crusts, nodules, sediments find
★ confirmed pulse ~2-3 Myr ago
★ evidence for pulse at ~8 Myr
★ 60Fe pulse duration ~1 Myr ?!
★ evidence for lunar signal—directionality?
★ Source of Local Bubble?

Birth of “Supernova Archaeology”

Implications across disciplines:
 nucleosynthesis, cosmic dust, stellar evolution, bio evolution, astrobiology

Future Research

‣ Supernova(e) origin and direction
 ★ lunar distribution
 ★ cosmic-ray anisotropies, 60Fe excess
 ★ neutron star/pulsar correlation
 ★ dust production, evolution, dynamics
Outlook

Live ^{60}Fe seen globally and on the Moon
★ signal in deep ocean crusts, nodules, sediments find
★ confirmed pulse ~2-3 Myr ago
★ evidence for pulse at ~8 Myr
★ ^{60}Fe pulse duration ~1 Myr ?!
★ evidence for lunar signal—directionality?
★ Source of Local Bubble?

Birth of “Supernova Archaeology”
Implications across disciplines:
nucleosynthesis, cosmic dust, stellar evolution, bio evolution, astrobiology

Future Research

‣ Supernova(e) origin and direction
 ★ lunar distribution
 ★ cosmic-ray anisotropies, ^{60}Fe excess
 ★ neutron star/pulsar correlation
 ★ dust production, evolution, dynamics

‣ more, different samples:
 ✓ other isotopes
 ✓ other media (fossil bacteria)
 ✓ other sites: back to the Moon!
Outlook

Live $^{60}{\text{Fe}}$ seen globally and on the Moon

★ signal in deep ocean crusts, nodules, sediments find
★ confirmed pulse ~2-3 Myr ago
★ evidence for pulse at ~8 Myr
★ $^{60}{\text{Fe}}$ pulse duration ~1 Myr ?!
★ evidence for lunar signal—directionality?
★ Source of Local Bubble?

Birth of “Supernova Archaeology”

Implications across disciplines:
- nucleosynthesis, cosmic dust, stellar evolution, bio evolution, astrobiology

Future Research

‣ Supernova(e) origin and direction
 ★ lunar distribution
 ★ cosmic-ray anisotropies, $^{60}{\text{Fe}}$ excess
 ★ neutron star/pulsar correlation
 ★ dust production, evolution, dynamics

‣ more, different samples:
 ✓ other isotopes
 ✓ other media (fossil bacteria)
 ✓ other sites: back to the Moon!

‣ other epochs? Mass extinction correlations?
Outlook

Live 60Fe seen globally and on the Moon
★ signal in deep ocean crusts, nodules, sediments find
★ confirmed pulse ~2-3 Myr ago
★ evidence for pulse at ~8 Myr
★ 60Fe pulse duration ~1 Myr ?!?!
★ evidence for lunar signal—directionality?
★ Source of Local Bubble?

Birth of “Supernova Archaeology”
Implications across disciplines:
 nucleosynthesis, cosmic dust, stellar evolution, bio evolution, astrobiology

Future Research

- Supernova(e) origin and direction
 ★ lunar distribution
 ★ cosmic-ray anisotropies, 60Fe excess
 ★ neutron star/pulsar correlation
 ★ dust production, evolution, dynamics

- more, different samples:
 ✓ other isotopes
 ✓ other media (fossil bacteria)
 ✓ other sites: back to the Moon!

- other epochs? Mass extinction correlations?
- stay tuned…Midwest SN 202x!
Whodunit?
The Moon as a Telescope
Fry, BDF, & Ellis (2016)

★ 60Fe dust grains nearly undeflected in Solar System
Whodunit?
The Moon as a Telescope
Fry, BDF, & Ellis (2016)

★ 60Fe dust grains nearly undeflected in Solar System
★ Earth:
Whodunit?
The Moon as a Telescope
Fry, BDF, & Ellis (2016)

★ ^{60}Fe dust grains nearly undeflected in Solar System

★ Earth:
 – stratosphere scrambles
Whodunit?
The Moon as a Telescope
Fry, BDF, & Ellis (2016)

★ ^{60}Fe dust grains nearly undeflected in Solar System

★ Earth:
 – stratosphere scrambles

★ Moon is airless:
Whodunit?
The Moon as a Telescope
Fry, BDF, & Ellis (2016)

★ 60Fe dust grains nearly undeflected in Solar System
★ Earth:
 – stratosphere scrambles
★ Moon is airless:
 – encodes direction!
 – 60Fe pattern points to source!

$\Delta \theta = \Delta \phi = 10.0^\circ$, $\eta = 155.0^\circ$, $\Delta t_{\text{signal}} = 100.0$ kyr
"radioactivity distance" from ^{60}Fe yield

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$
“radioactivity distance” from ^{60}Fe yield

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$

What makes ^{60}Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18
"radioactivity distance" from 60Fe yield

$$D \sim \sqrt{M_{60,eject}/N_{60,obs}}$$

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18
What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

"radioactivity distance" from 60Fe yield

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$

\[\text{Mass of Progenitor} [M_\odot]\]

\[\text{Estimated distances for possible progenitors, for }^{60}\text{Fe yields and the fact that the fission recycling sources are }\sim 10-100 \text{ times larger than }^{244}\text{Pu atom detected}\]

\[\text{More likely, }^{60}\text{Fe never arrives}\]

\[\text{60Fe never arrives}\]
"radioactivity distance" from 60Fe yield

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

60Fe never arrives

![Graph showing the relationship between radioactivity distance and mass of progenitor.](image)

Mass of Progenitor

- A6.5
- A7.0
- A8.5
- $R_{\text{fade, CCSN}}$
- $R_{\text{fade, ECSN}}$
- S15
- S19
- S20
- S21
- S25

We are dead

60Fe isotope fraction

- 60Fe yield
- 60Fe anomaly.

60Fe from various source candidates

- 60Fe yields from various source candidates
- 60Fe never arrives

Whodunit?

Fry, BDF, & Ellis 2015
What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

What makes 60Fe yield?

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$
“radioactivity distance” from 60Fe yield

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

Using the decay-corrected Knie et al. (2004) and fit to us sie et al. (2008), we have solved Equation (6). Of particular note are the TNSN. Consequently, a biohazard argument cannot rule out what makes 60Fe?

- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18
“radioactivity distance” from ^{60}Fe yield

$$D \sim \sqrt{M_{60,\text{eject}}/N_{60,\text{obs}}}$$

What makes ^{60}Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

\[\text{Figure 2. The Astrophysical Journal} \]
What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor Wallner+ 16; Miller & BDF 18

D ∼ $\sqrt{M_{60,\text{eject}} / N_{60,\text{obs}}}$

"radioactivity distance" from 60Fe yield

60Fe yields due to nuclear reaction γ and fitting sources. (2013-2015)

What is the 60Fe anomaly?
What makes 60Fe?

- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor

“radioactivity distance” from 60Fe yield

$$D \sim \sqrt{M_{60,\text{eject}} / N_{60,\text{obs}}}$$
What makes 60Fe?
- core-collapse supernovae
 - Type Ia supernovae
 - AGB stars
 - kilonovae
- impactor

“radioactivity distance” from 60Fe yield

$$D \sim \sqrt{M_{60,\text{eject}} / N_{60,\text{obs}}}$$
"radioactivity distance" from 60Fe yield

$$D \sim \sqrt{M_{60,\text{eject}}/N_{60,\text{obs}}}$$

What makes 60Fe?
- Core-collapse supernovae
- Type Ia supernovae
- AGB stars
- Kilonovae
- Impactor

SN distance:

![Graph](image-url)
“radioactivity distance” from 60Fe yield

$$D \sim \sqrt{M_{60,\text{eject}} / N_{60,\text{obs}}}$$

What makes 60Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor

SN distance:

$$d(^{60}\text{Fe}) \sim 30 - 150 \text{ pc}$$

What makes 60Fe?

- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor

SN distance:

$$d(^{60}\text{Fe}) \sim 30 - 150 \text{ pc}$$
“radioactivity distance” from 60Fe yield

\[D \sim \sqrt{M_{60,eject} / N_{60,obs}} \]

What makes 60Fe?
- Core-collapse supernovae
- Type Ia supernovae
- AGB stars
- Kilonovae
- Impactor: Wallner + 16; Miller & BDF 18

SN distance:

\[d(^{60}\text{Fe}) \sim 30 - 150 \text{ pc} \]

Encouraging:
“radioactivity distance” from ^{60}Fe yield

\[D \sim \sqrt{M_{60,\text{eject}}/N_{60,\text{obs}}} \]

What makes ^{60}Fe?
- Core-collapse supernovae
- Type Ia supernovae
- AGB stars
- Kilonovae
- Impactor Wallner+ 16; Miller & BDF 18

SN distance:
\[d(^{60}\text{Fe}) \sim 30 - 150 \text{ pc} \]

Encouraging:
★ astronomical distances not built in!

`Whodunit?`
Fry, BDF, & Ellis 2015

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\end{figure}
“radioactivity distance” from ^{60}Fe yield

$$D \sim \sqrt{\frac{M_{60,\text{eject}}}{N_{60,\text{obs}}}}$$

What makes ^{60}Fe?
- core-collapse supernovae
- Type Ia supernovae
- AGB stars
- kilonovae
- impactor: Wallner+ 16; Miller & BDF 18

SN distance:

$$d(^{60}\text{Fe}) \sim 30 - 150 \text{ pc}$$

Encouraging:
- † astronomical distances not built in!
- † $d(^{60}\text{Fe}) \approx d(\text{SN} \rightarrow \text{Earth}) \approx d_{\text{SN}}(3 \text{ Myr})$

Yellow: nontrivial consistency!
Nachbarsternsupernovaexplosionsgefahr
or
Attack of the Death Star!
Nachbarsternsupernovaexplosionsgefahr
or
Attack of the Death Star!

Ill efects if a supernova too close
possible source of mass extinction

- Shklovskii; Russell & Tucker 71; Ruderman 74; Melott group
Nachbarsternsupernovaexplosionsgefahr
or
Attack of the Death Star!

Ill effects if a supernova too close
possible source of mass extinction
- Shklovskii; Russell & Tucker 71; Ruderman 74; Melott group

Ionizing radiation
- initial gamma, X, UV rays destroy stratospheric ozone
 Ruderman 74; Ellis & Schramm 94
- solar UV kills bottom of food chain
 Crutzen & Bruhl 96; Gehrels et al 03;
 Melott & Thomas groups; Smith, Scloa, & Wheeler 04
- cosmic rays arrive with blast, double whammy
- ionization damage, muon radiation
Nachbarsternsupernovaexplosionsgefahr

or

Attack of the Death Star!

Ill effects if a supernova too close
possible source of mass extinction

- Shklovskii; Russell & Tucker 71; Ruderman 74; Melott group

Ionizing radiation

- initial gamma, X, UV rays destroy stratospheric ozone
 Ruderman 74; Ellis & Schramm 94
- solar UV kills bottom of food chain
 Crutzen & Bruhl 96; Gehrels et al 03;
 Melott & Thomas groups; Smith, Sclao, & Wheeler 04
- cosmic rays arrive with blast, double whammy
- ionization damage, muon radiation

Neutrinos

- neutrino-nucleon elastic scattering:
 “linear energy transfer”
 DNA damage
 Collar 96, but see Karam 02
Nachbarsternsupernovaexplosionsgefahr

or

Attack of the Death Star!

Ill effects if a supernova too close
possible source of mass extinction

- Shklovskii; Russell & Tucker 71; Ruderman 74; Melott group

Ionizing radiation

- initial gamma, X, UV rays destroy stratospheric ozone
 Ruderman 74; Ellis & Schramm 94
- solar UV kills bottom of food chain
 Crutzen & Bruhl 96; Gehrels et al. 03;
 Melott & Thomas groups; Smith, Sclao, & Wheeler 04
- cosmic rays arrive with blast, double whammy
- ionization damage, muon radiation

Neutrinos

- neutrino-nucleon elastic scattering
 “linear energy transfer”
 DNA damage

Minimum safe distance: ~8 pc