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AT2018cow

rise-time of < 3 days & peak luminosity ~ 4 x 1044 erg s
small ejecta mass -> brighter and shorter SNe
e light fast ejecta becomes transparent quickly
e internal energy is not wasted on expansion
The X-ray emission of initial power ~ 1043 erg s-! had an exira
component at t < 15 days, peaking at ~ 40 keV
Evolution of line profiles indicate anisotropy
Similar optical and X-ray luminosities

There is a clear change of properties of the emission at ~ 20 days, H &
He lines appear

There is an indication of the rising IR component at t =2 30 days
There is bright radio emission 1 =2 80 day
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e Forward Shock: first through shock

ejecta then through wind
 change at ~ 20 days

C * hydrogen from wind (DA WDs,

10-4 of H)
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Population synthesis

Initial binary ~ 5+8 Msun

Two distinct evolutionary
channel (direct and inverted)

CO-ONeMg WD mergers rate
(g>0.25) ~ & - 10-sper Solar
mass, consistent with the lower
imit of the FBOT rate.

Host galaxies: merger delays ~
100 Myrs
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Population synthesis
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Wind and ejecta

Minimal bounce-off mass: 102 MSun

Ejecta velocity from proto-NS of 30 km: ~ 0.25 ¢
Optical transparency: few days

Ejecta-wind interaction: slow down in ~ 30 days

Blackbody radius R..~ 8 x 10“cm - wind-driven cavity
expands to these scales on time scales of few days

Similar X-ray and opfical luminosities: expected in the fast
cooling
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NS wind-ejecta

PWN dynamics inside ejecta
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X-rays: synchrotron from
termination shock

Peak synch. frequency at 1S: €, =~ H0keV t;5/4
Radiative cooling in decreasing B-field: pile-up in IR
In fast cooling regime: most wind power radiated, Lx ~ Lw
NS spindown
L, = two
(1+t/ta)?
Lo ~ 10%erg™1
to ~ 20days

Erratic inter-day variability X-ray emission: not FS, easy in TS
in fast cooling (Lyutikov +2017)
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Connection to Short GRBs: there are problems with
NS+NS scenario, not seen in GW170817
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Active stage of NS-NS merger takes 10-100 msec, then collapse into BH. Very little mass
is ejected.

Many short GRBs have long 100 sec tails, energetically comparable/dominant to the
prompt spike.

Many GRBs have late fime flares, 10s sec
Would be good to have an active object remaining, but Miot > 2.5 Msyn
AIC of merged WDs: bounce-off may produce a short GRB (Lyutikov & Toonen 2017)










Scenario

Initial binary ~ 5+8 Msun
1.3 Msun ONeMg WD + g> 0.25 another WD

Unstable Roch lobe overflow - CO WD is disrupted on few orbital tfime
scales - tens of seconds

high accretion rate - material not expelled in Nova-like events

C-detonation does not happen - avoids SN |la
e Shell burning, wind mass-loss
e ONeMG reaches super-Ch. mass, goes AIC

» < few tens% of MSun ejected, smaller if timing OK
* Newly formed fast rotating NS, B-field is amplified (not too extreme)

e Central power NS drives relativistic wind
e Termination shock: X - IR in fast cooling regime
e Forward Shock: first through ejecta then through wind
* change at ~ 20 days
* hydrogen from wind (DA WDs are most common, 10-4 of H)
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Lyutikov & Nelson, in prep

WD-WD mergers and AIC as short GRB
engine

e Rates:
« WD-WD mergers ~ 1 per 100-1000 yr per Galaxy, ~ SN la (and other SN)
e Short GRBs ~ 1 per 10°yr per Galaxy, so 0.1-1% needed

e Super-Ch. mass: 10% of total mergers, so 1-10% of Super-Ch. mergers
needed

e SO, we need a narrow, very special channel to produce a GRB from
WD-WD mergers




