Testing Neutrino Secret Interactions with Supernovae

John Beacom

CCAPP, The Ohio State University

In collaboration with

Po-Wen Chang, Ivan Esteban, Todd Thompson, Chris Hirata

arXiv:2206.12426

The Ohio State University

RockyFest, Chicago, March 2023

Why I'm here

Neutrinos are special particles

In the *laboratory:*

• Their lack of strong and EM interactions makes neutrinos *exquisitely sensitive to new forces*

In *cosmology:*

• Their high cosmic abundance makes neutrinos *exquisitely sensitive* to the conditions of the early universe

In astronomy:

• Their penetrating power makes neutrinos *exquisitely sensitive to the physics in the dense interiors of sources*

But do they have secrets?

Enhanced *neutrino self-interactions* (vSI)

Kolb, Turner (1987):

Although the interactions of neutrinos with "matter" (electrons, protons, neutrons, nuclei, etc.) are weak, *it is possible that neutrinos have "stronger than weak" interactions with other unknown particles (e.g., Majorons), or with themselves...*

...By secret interactions, we mean interactions not shared by charged particles, i.e., interactions beyond those in the SU(3) \times SU(2) \times U(1) model.

Testing vSI with supernovae: prior work

Testing vSI with supernovae: our work

Concluding perspectives

John Beacom (Ohio State)

John Beacom (Ohio State)

John Beacom (Ohio State)

John Beacom (Ohio State)

John Beacom (Ohio State)

John Beacom (Ohio State)

Testing vSI with supernovae: prior work

John Beacom (Ohio State)

Final fate of a massive star

The collapsed core becomes a dense proto-neutron star (PNS)

Core-collapse supernovae are efficient neutrino factories

Tremendous amount of gravitational energy

99%	neutrinos
1%	+ kinetic energy of eiecta
	+
0.01%	photons

John Beacom (Ohio State)

Propagation of SN 1987A neutrinos

Strong vSI: supernova neutrinos will get attenuated en route to Earth

Kolb, Turner (1987)

Shalgar, Tamborra, Bustamante, 1912.09115

John Beacom (Ohio State)

John Beacom (Ohio State)

Cooling of SN 1987A

vSI: force mediator can lead to **extra cooling** of supernovae

Kachelriess, Tomas, Valle, hep-ph/0001039 Farzan, hep-ph/0211375 Heurtier, Zhang, 1609.05882

John Beacom (Ohio State)

John Beacom (Ohio State)

Shock of SN 1987A

Strong vSI: $2v \rightarrow 4v$ processes **fail** to produce a neutrino-driven shock

Shalgar, Tamborra, Bustamante, 1912.09115

John Beacom (Ohio State)

John Beacom (Ohio State)

Testing vSI with supernovae: our work

Based on **2206.12426**

John Beacom (Ohio State)

Supernova neutrino emission: no vSI

Inside the proto-neutron star (PNS): neutrinos **diffuse** through baryons

Outside the PNS: neutrinos **free stream** to us

Supernova neutrino emission: no vSI

Inside the proto-neutron star (PNS): neutrinos **diffuse** through baryons

Outside the PNS: neutrinos **free stream** to us

Order-of-magnitude: $t_{
m diff}\sim 3R^2/(c\lambda_{
uN})\sim 10\,{
m s}$

Supernova neutrino emission: no vSI

Confirmed by SN 1987A

data

SN 1987A

20

t [s]

John Beacom (Ohio State)

RockyFest, University of Chicago, March 2023

30

What if strong vSI exist?

Can vSI can affect the observed duration of the supernova neutrino pulse?

- Manohar (1987): Yes!
- Dicus, Nussinov, Pal, Teplitz (1989): No!

We show that both papers are at best incomplete

What if strong vSI exist?

Inside the PNS:

- Complicated effects with baryons?
- Degenerate neutrinos?
- SN + neutrino transport simulation with vSI

Outside the PNS:

- Baryon effects are largely reduced
- Neutrinos (almost) only talk with each other
- The problem is just relativistic hydrodynamics!
- A system of neutrinos with strong self-scattering = a perfect fluid

What if strong vSI exist?

Inside the PNS:

- Complicated effects from baryons?
- Degenerate neutrinos?
- SN + neutrino transport simulation with vSI

If strong vSI exist

Extremely frequent v-v scattering persists outside the PNS

If strong vSI exist

Extremely frequent v-v scattering persists outside the PNS

Mean free path:

 $egin{aligned} n_
u &\sim 10^{33}\,{
m cm}^{-3}, ~~\sigma_{
u{
m SI}} \sim g^2/M_\phi^2 \ g &\sim 10^{-4}, ~M_\phi \sim 10\,{
m MeV} \ m{\lambda}_{
u
u} &\sim (m{n}_
u m{\sigma}_{
u{
m SI}})^{-1} \sim m{0.1\,{
m mm}} \end{aligned}$

If strong vSI exist

Extremely frequent v-v scattering persists outside the PNS

Mean free path:

 $egin{aligned} n_
u &\sim 10^{33}\,{
m cm}^{-3}, \ \sigma_{
u{
m SI}} &\sim g^2/M_\phi^2 \ g &\sim 10^{-4}, \ M_\phi &\sim 10\,{
m MeV} \ \lambda_{
u
u} &\sim (n_
u\sigma_{
u{
m SI}})^{-1} &\sim 0.1\,{
m mm} \end{aligned}$

Hydrodynamic limit: relativistic fluid

Rest frame of each fluid element: isotropic

John Beacom (Ohio State)

Relativistic hydrodynamics

Comoving frame of perfect fluid: $ilde{T}^{lphaeta}= ext{diag}(ilde{
ho}, ilde{P}, ilde{P}, ilde{P})$ $ilde{P}= ilde{
ho}/3$

- Energy-momentum conservation
- Number conservation

 $egin{array}{lll}
abla_lpha T^{lphaeta} = 0 \
abla_lpha (ilde n\,U^lpha) = 0 \end{array}$

1) Transient burst

2) Steady-state wind

Relativistic hydrodynamics

Comoving frame of perfect fluid:

Transient burst

- Energy-momentum conservation
- Number conservation

$${\widetilde{T}}^{lpha
ho} = {
m diag}({\widetilde{
ho}}, {\widetilde{P}}, {\widetilde{P}}, {\widetilde{P}}) ~~~~ {\widetilde{P}} = {\widetilde{
ho}}/3$$

$$egin{array}{lll}
abla_lpha T^{lphaeta} = 0 \
abla_lpha (ilde n\,U^lpha) = 0 \end{array}$$

2) Steady-state wind

1)

Relativistic hydrodynamics

Complicated supernova dynamics involving vSI: unclear which type of outflow is obtained Interesting phenomenology should exist for both cases!

Burst outflow: robust observable with interesting phenomenology

We find that if the burst is realized, strong vSI will *extend* the **observed duration of supernova neutrinos**.

Key ideas: random motion in all directions & neutrino decoupling

Burst outflow: robust observable with interesting phenomenology

The fluid is a tightly coupled, expanding *neutrino ball*.

Burst outflow: robust observable with interesting phenomenology

The homogeneous neutrino ball keeps expanding and diluting. $n_
u\downarrow \ \Rightarrow \ au_{
u{
m SI}}\downarrow$

Burst outflow: robust observable with interesting phenomenology

At some point, the interaction rate becomes too small. Neutrinos *decouple* from each other.

John Beacom (Ohio State)

Burst outflow: robust observable with interesting phenomenology

The directions of neutrino motion "*freeze*" after the last scattering.

Burst outflow: robust observable with interesting phenomenology

The ball eventually becomes a *free-streaming neutrino shell*

The thickness of the shell $\,\sim$ observed duration of supernova neutrino signals

Potential sensitivity from SN 1987A

Phenomenology of the **burst outflow**

John Beacom (Ohio State)

Potential sensitivity from SN 1987A

John Beacom (Ohio State)

Concluding perspectives

John Beacom (Ohio State)

Summary of results

- Understanding neutrinos relies upon connecting laboratory, cosmology, and astronomy data.
- Strong neutrino secret interactions remain allowed and could affect all three.
- Even 36 years after SN 1987A, we are still not sure how vSI affect the dense neutrinos in supernovae.
- Our work provides a roadmap, identifying two possible cases for the behavior of the expanding neutrino fluid: a burst or a steady-state wind.
- In the burst case, we obtain strong new limits on vSI. In the wind case, we are optimistic about identifying other new observables. Lots of work in progress.

Thank you to Rocky

Examples of opportunities Rocky and the group gave me:

- New directions to my research
- Resources and freedom to grow my own initiatives
- The platform to take larger roles

Examples of what Rocky specifically taught:

- How to be a complete scientist
- How to be a leader and mentor
- How to make it all fun

Thank you to Rocky

What's happening

NHL · Last night Bruins at Oilers

Trending in United States ROCKY WINSASTRO

1,531 Tweets

Trending in Illinois Chicagoans Rejoice

...

John Beacom (Ohio State)