

INTERESTING ASPECTS OF MULTI-VALUED HAMILTONIANS

Nelson Pinto-Neto

Brazilian Center for Physics Research (CBPF)

together with Alexsandre Ferreira and Jorge Zanelli

First visit of Rocky to Rio: 1987.

The V Brazilian School of Cosmology and Gravitation

He came back in 2002,

The X Brazilian School of Cosmology and Gravitation

and in 2022,
The XVIII Brazilian
School of Cosmology and Gravitation

FIRST ORDER FORMALISM FOR QUANTUM GRAVITY

Marcelo GLEISER, Richard HOLMAN and Nelson P. NETO ${ }^{\dagger}$

NASA / Theoretical Astrophysics Group, Fermilab, P.O.B. 500, Batavia, Illinois 60510, USA

String theory should lead to no ghost higher order

 corrections supposed to contain a Gauss-Bonnet term in d-dimensions \rightarrowIf we write the lagrangian density as

$$
\begin{equation*}
\mathscr{L}=k^{-1} R+\alpha\left(R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}\right), \tag{1.2}
\end{equation*}
$$

we obtain, after a tedious calculation, the action in ADM form

$$
\begin{aligned}
I=\int \mathrm{d} t \mathrm{~d}^{d-1} x N h^{1 / 2}\left\{k^{-1}(\right. & \left.\operatorname{tr} K^{2}-K^{2}+\tilde{R}\right) \\
+\alpha & {\left[\left(2 \operatorname{tr} K^{4}-\left(\operatorname{tr} K^{2}\right)^{2}+2 K^{2} \operatorname{tr} K^{2}-\frac{8}{3} K \operatorname{tr} K^{3}-\frac{1}{3} K^{4}\right)\right.} \\
& +\left(-4 \tilde{R}_{i j k l} K^{i j} K^{k l}-8 \operatorname{tr}\left(K^{2} \tilde{R}\right)-2 \tilde{R} K^{2}+2 \tilde{R} \operatorname{tr} K^{2}\right. \\
& \left.\left.+8 K(\operatorname{tr} K \tilde{R})+\left(\tilde{R}_{i j k l} \tilde{R}^{i j k l}-4 \tilde{R}_{i j} \tilde{R}^{i j}+\tilde{R}^{2}\right)\right]\right\}+ \text { s.t. }
\end{aligned}
$$

Quantum mechanics for multivalued Hamiltonians

Marc Henneaux,* Claudio Teitelboim, ${ }^{\dagger}$ and Jorge Zanelli ${ }^{\ddagger}$ Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile (Received 4 May 1987)
When the Lagrangian is not quadratic in the velocities, the situation may arise that the expression for the velocities in terms of the momenta is multivalued. As a consequence, the classical motion is unpredictable since at any time one can jump from one branch of the Hamiltonian to another. Yet, the quantum theory turns out to be perfectly smooth, with wave functions which are regular functions of time. We show that the path integral automatically picks up a unique combination of the branch Hamiltonians, which is a natural generalization of the Brouwer degree of the Legendre map.

$$
S \equiv \int L d t=\int\left(\frac{1}{4} \dot{q}^{4}-\frac{1}{2} \alpha \dot{q}^{2}\right) d t
$$

$$
p(\dot{q}) \equiv \frac{\partial L}{\partial \dot{q}}=\dot{q}^{3}-\alpha \dot{q}
$$

> In fact, this feature appears in several interesting physical systems, such as the Lovelock extension of General Relativity in higher dimensions, classical time crystals, k-essence fields, Horndeski theories, compressible fluids, nonlinear electrodynamics, and so on.

Classical Time Crystals

Alfred Shapere ${ }^{1}$ and Frank Wilczek ${ }^{2}$
${ }^{1}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40502 USA
${ }^{2}$ Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA (Received 3 April 2012; published 15 October 2012)

We consider the possibility that classical dynamical systems display motion in their lowest-energy state, forming a time analogue of crystalline spatial order. Challenges facing that idea are identified and overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for nonsingular Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural arena for formation of time crystals. We exhibit models of that kind, including a model with traveling density waves.

$$
L_{2}(\phi, \dot{\phi})=-\frac{\kappa_{2}}{2} \dot{\phi}^{2}+\frac{\lambda_{2}}{4} \dot{\phi}^{4}
$$

Phys. Rev. D 105, 084064 (2022)

Dynamical dimensional reduction in multi-valued Hamiltonians

Alexsandre L. Ferreira Junior, ${ }^{1, *}$ Nelson Pinto-Neto, ${ }^{2,}{ }^{\dagger}$ and Jorge Zanelli ${ }^{3}{ }^{\ddagger}$
${ }^{1}$ PPGCosmo, CCE - Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, 29075-910, Vitória-ES, Brazil.
${ }^{2}$ Department of Cosmology, Astrophysics and Fundamental Interactions-COSMO, Centro Brasileiro de Pesquisas Físicas-CBPF, rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil
${ }^{3}$ Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia, Chile, and

> Universidad San Sebastián, General Lagos 1163, Valdivia, Chile.
(Dated: May 3, 2022)
Several interesting physical systems, such as the Lovelock extension of General Relativity in higher dimensions, classical time crystals, k-essence fields, Horndeski theories, compressible fluids, and nonlinear electrodynamics, have apparent ill defined sympletic structures, due to the fact that their Hamiltonians are multi-valued functions of the momenta. In this paper, the dynamical evolution generated by such Hamiltonians is described as a degenerate dynamical system, whose sympletic form does not have a constant rank, allowing novel features and interpretations not present in previous investigations. In particular, it is shown how the multi-valuedness is associated with a dynamical mechanism of dimensional reduction, as some degrees of freedom turn into gauge symmetries when the system degenerates.

$$
L=\frac{\beta}{4} \dot{\phi}^{4}-\frac{\kappa}{2} \dot{\phi}^{2}-V(\phi),
$$

$$
p_{\phi}=\beta \dot{\phi}^{3}-\kappa \dot{\phi}
$$

$$
\left(3 \beta \dot{\phi}^{2}-\kappa\right) \ddot{\phi}=-V^{\prime}(\phi)
$$

$$
V(\phi)=\frac{\lambda}{4} \phi^{4}-\frac{\omega}{2} \phi^{2},
$$

$$
\rho=\dot{\phi}
$$

K-essence: application to Cosmology

Our model Universe is a spatially flat FLRW spacetime filled with a k-essence scalar field:

$$
\begin{equation*}
\mathcal{L}=f(\phi) k(X)-V(\phi) \tag{1}
\end{equation*}
$$

The kinetic term is an a priori arbitrary function $k(X)$ of the canonical kinetic term $X=(\nabla \phi)^{2} / 2=\dot{\phi}^{2} / 2$, to be conveniently chosen for our purposes. Moreover $f(\phi)>$ 0 , for not to be hunted by ghosts. Analogously to perfect fluids, the field has pressure $p=\mathcal{L}$, and energy density

$$
\begin{equation*}
\varepsilon=2 X \mathcal{L}_{, X}-\mathcal{L}=f\left(2 X k_{, X}-k\right)+V . \tag{2}
\end{equation*}
$$

The dynamics of the model is found through Einstein's equations

$$
\begin{equation*}
H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \varepsilon, \quad \varepsilon_{, X} \ddot{\phi}=-3 H p_{, X} \dot{\phi}-\varepsilon_{, \phi} \tag{3}
\end{equation*}
$$

$$
w=\frac{f k-V}{f\left(2 X k_{, X}-k\right)+V}
$$

$$
c_{s}^{2}=\frac{p_{, X}}{\varepsilon_{, X}}=\frac{k_{, X}}{2 X k_{, X X}+k_{, X}} \geq 0
$$

$$
\mathcal{L}=f(\phi)\left(X-X_{d}\right)^{3}-V(\phi) .
$$

or any other power bigger than 3.

FIG. 5: Stream plot of the phase space for $f(\phi)=$ cte and $V=m^{2} \phi^{2} / 2$. The red curves are $\dot{\phi}= \pm \sqrt{2}$, the black dotted ones are $\dot{\phi}=\sqrt{2 / 5}$. The dashed purple curve represents $\ddot{\phi}=0$ and the dot-dashed stream curves are the solution which fall into the attractor.

$$
X_{d}=1 \quad \Delta=X-1
$$

$$
p=f \Delta^{3}-V, \quad \varepsilon=f \Delta^{2}(5 X+1)+V,
$$

$$
c_{s}^{2}=\frac{\Delta}{5 X-1}
$$

$$
\begin{array}{r}
\frac{\mathrm{d} X}{\mathrm{~d} \phi}=-\frac{4 \Delta}{5 X-1} \sqrt{3 \pi f G X\left[\Delta^{2}(5 X+1)+\frac{V}{f}\right]} \\
-\frac{V_{, \phi}}{3 f \Delta(5 X-1)}
\end{array}
$$

One would like to evaluate the typical value of the field when it reaches the degenerate surface in the future, the effective emerging cosmological constant, and the values of the new energy scales that lead to the present observed acceleration of the Universe. Two cases:

1) $f X_{d}^{2} \ll 1: m=10^{3} \mathrm{Tev}, \mu_{d}=10 \mathrm{kev}$
2) $f X_{d}^{2} \gg 1: m=10^{3} \mathrm{Tev}, \mu_{d}=1 \mathrm{Mev}$

In this second case, the attractor is very close to the degeneracy surface.

Summarizing the properties:
i) A single scalar field leading to primordial inflation and the \wedge of the \wedge CDM model.
ii) Both primordial inflation and \wedge happens within a dense set of initial conditions.
iii) The model may not have singularities: it arises from de Sitter space, and ends as a de Sitter space with a much smaller cosmological constant.
iv) Many other Lagrangians may share the same properties, specially for case 2) above.
v) Speculations: quantum analysis, a scenario for Penrose cyclic model?

THANKS ROCKY!!

