SEEING BETTER

Albert Stebbins Fermilab Rocky & Friends Chicago, USA 2023-03-19

There's nothing worse than a room full of earnest people

PROFESSOR ROCKY KOLB Theoretical Astrophysics Group, Fermilab

Live

News

Weather

Good Day Sports

Email

Contests

More

Latest News

Chicago mayoral election: Bernie Sanders throws his support behind Brandon Johnson

Judge again delays issuing certificates of innocence for 2 Chicago brothers exonerated of murder

Man wrongfully convicted of 1989 Gold Coast murder to be freed Thursday

Lincoln Park bank burglary: Suspects drill through wall to access money vault

Who will be Trump's running mate in 2024? Some in GOP already lobbying for VP

AMONG MOST SUCCESSFUL THEORIES OF MODERN SCIENCE

LIFE THE UNIVERSE AND EVERYTHING

space-time geometry: homogeneous isotropic with no spatial curvature
+ density inhomogeneities: adiabatic homogeneous isotropic Gaussian noise

		Parameter	[4] <i>Planck</i> TT,TE,EE+lowP
INVENTORY:	baryons	$\overline{\Omega_{ m b}}h^2$	0.02225 ± 0.00016
	(cold) dark matter	$\Omega_{\rm c}^{\rm h^2}h^2$	0.1198 ± 0.0015
	Λ / dark energy	$100\theta_{MC}$	1.04077 ± 0.00032
	optical depth	au	0.079 ± 0.017
	amplitude	$\ln(10^{10}A_{\rm s})$	3.094 ± 0.034
AKKANGEMEN	slope	$n_{\rm s}$	0.9645 ± 0.0049
NUISANCE:	expansion rate	H_0	67.27 ± 0.66
photons		$T_0 \ldots \ldots \ldots cobe/Firas 2.7255 \pm 0.0006 \text{ K}$	

It's important to draw the curve before you plot the data points

PROFESSOR ROCKY KOLB Theoretical Astrophysics Group, Fermilab

LESS SUCCESSFULTHEORETICAL PROGRAM

Unwieldy Tomes

Encyclopédie (dictionnaire raisonné des sciences des arts et des métiers) 1751-1772 Díderot & d'Alembert (enlightenment / post-Jesuit thought)

post-classical theoretical cosmology

Encyclopædia inflationaris 2014 Martín Ríngeval & Vennín Encyclopædia curvatonis 2015 Vennín, Kazuya & Wands

Encyclopædia obscura materia TBAEncyclopædia tenebris navitas TBA

"CAPTIVATING...KEEN OBSERVATIONS" -NEW YORK TIMES BOOK REVIEW

NOTHING IS TRUE AND EVERYTHING IS POSSIBLE

THE SURREAL HEART OF THE NEW RUSSIA

A BRIEF WORD FROM MY SPONSOR

FERMILAB THEORY Summer Visitors' Program

- Postdoc/Faculty level active researcher
- 2-3 week stays (not short / few day visit)
- May-September 2023
- Local expenses covered (not travel)
- Nominal Deadline 31 March 2023
- Consider Applying Today!
- https://theory.fnal.gov/visiting-us/summer-visitors-program/
- Program expected to continue annually

It's important to draw the curve before you plot the data points

> PROFESSOR ROCKY KOLB Theoretical Astrophysics Group, Fermilab

"A thoroughly fascinating tale." —George Smoot, coauthor of *Wrinkles in Time*

BLIND WATCHERS OF THE SKY

The People and Ideas that Shaped Our View of the Universe

BUILD ASTRONOMICAL INFRASTRUCTURE

- Measure what you can measure much better than you could before.
 - if no strong arguments there is nothing there
- good chance you'll find something new.
- Prioritization?

ANGULAR RESOLUTION FRONTIER

- VLBI (radio)
 - probes ~ I milli-arcseconds
- single site Optical/InfraRed Interferometers
 - probes ~0.1-10 milli-arcseconds
- VLBI (mm) Event Horizon Telescope
 - probes ~10 micro-arcseconds

diffraction limit: $\delta \vartheta \sim \lambda/b$

GROUND BASED IMAGING LIMITED BY EARTH SIZE :

BASELINE ≤10000KM

IN OPTICAL:

WAVELENGTH ~ I MICRON

ANGULAR SCALE ≈ 10-9 ARCSEC

IMAGING

- optically combine waves from different transverse positions
 - on spatial scale better than one wavelength

IMAGING: TRANSVERSE CORRELATIONS

- "point" source "incoherent" source emitting wave
 - color gives polarization position angle, intensity gives amplitude
- line-of-sight correlation length $\sim\lambda$ for broadband emission
- **but** for point source transverse correlations infinite

IMAGING: TRANSVERSE CORRELATIONS

- "extended" "incoherent" source emitting wave
 - color gives polarization position angle, intensity gives amplitude
- line-of-sight correlation length $\sim\lambda$ for broadband emission
- **but** transverse correlations $b_{\perp} \sim \lambda / \vartheta \propto distance$
- ''image'' encoded in transverse correlations

TEMPORAL INTENSITY CORRELATIONS*

- field correlation power spectrum: $\boldsymbol{f}_{\!\scriptscriptstyle V}$ (flux density e.g. Janskies)
- intensity correlation power spectra (unpolarized)
 (δl²)_V = ¼ ∫ dV f_V f_{V-V}
- intensity has more long duration correlations
- polarized emission increases (δl²)_ν

★''Hanbury-Brown Twiss effect''

band : [0.3 , 1] μm

INCREASE TEMPORAL CORRELATION BY DECREASING BANDWIDTH

band : [0.9999 , 1] µm

• intensity ''mixes' radiation field with itself • ''mixes down' to $1/\delta t \sim \Delta \nu$ • ''mixes up'' to $1/\delta t \sim 2\nu$ • **R** ~ $\nu/\Delta \nu \ge 10^4 \Rightarrow$ ''quantum limit'' $\delta t \Delta \nu \le \frac{1}{2}$ 0.01 fsec psec nsec time resolution

SIMULTANEOUS COUNT RATE

$$r_{12} = \delta t r_1 r_2 \left(1 + 2\frac{\Phi}{m} \right) \quad \text{``Gaussian'' Radiation'' r_i count rate} \\ m \cong 2 \,\delta t \,\delta \nu \quad \text{polarized counters} \\ m \cong 4 \,\delta t \,\delta \nu \quad \text{unpolarized counters} \quad \delta t \,\delta \nu \leq \frac{1}{2} \quad \begin{array}{c} \text{Schwarz} \\ \text{Inequality} \end{array}$$

MEASURE COHERENCE FUNCTION

HOW TO MEASURE INTENSITY CORRELATIONSANALOG

Analog method uses cables - not feasible for VLBII!

DIGITAL
 Ight from the stor
 Ight from the stor

COHERENCE CORRELATION FUNCTION

TIME DOMAIN COHERENCE subtract temporal mean

COHERENCE FUNCTION FOR ONLY 2 BASELINES rotating dynamic star [Sun from Solar Dynamics Observatory] only two orthogonal baselines from 3 to 4 telescopes

in foreseeable future most II observations will only have a few baselines

ENABLINGTECHNOLOGY

Intensity interferometry: measure excess rate of "coincident" photon counts from a single source at two (or more) widely separated locations.

Light should be separated spectroscopically before counting.

- large collecting area telescopes
- precise times of arrival
- accurate times of arrival
- detectors with large numbers of independent counters (i.e. pixels)

QUANTUM LIMITED DETECTOR: LAPPD?

Large Area Picosecond Photon Detector

LAPPD could be off the shelf fast spectroscopic counters

- precise timing capability (<100psec)
- >10⁴ resolution elements for spectroscopy on each device
- can handle large count rate (> million counts per second)
- off-the-shelf technology soon?

Quantum Efficiency 20-40%?

alternately, SiPM, SPAD, SNSPD,

COLLECTING AREA = GLASS

BIG GLASS APERTURE "DIAMETER" ≥ 200"

VLBII: VERY LONG BASELINE INTENSITY INTERFEROMETRY

EXTREMELY LARGE TELESCOPES

Thirty Meter Telescope (TMT)

SURFACE BRIGHTNESS REQUIREMENTS TEMPERATURE SENSITIVITY

TARGET: SUPERMASSIVE BHS / QSO

REALTIME KILONOVAE

