Spectroscopic Frontiers and Observational Challenges in Studying Dwarf Galaxies

Josh Simon (Carnegie Observatories)

Why are dwarfs interesting?

- Smallest DM halos that contain stars
- Windows to early galaxy formation processes

Smith et al. (2023)

Conn et al. (2018)

Why do we need spectra?

• Masses, metallicities, and chemical abundances

0.8 0.6 0.4

0.2

5150

Conroy et al. (2019), Simon et al. (submitted)

Why do we need spectra?

- Masses, metallicities, and chemical abundances
- Some key results these data have provided:
 - Dwarfs are (usually) highly dark matter-dominated (Wolf et al. 2010)
 - Metallicity-luminosity relation extends at least down to $L{\sim}1000~L_{\odot}$ (Kirby et al. 2013)
 - Extreme r-process enrichment in Reticulum II (Ji et al. 2016)

What is the state of the art*?

- Stellar velocities with a precision of $\lesssim 1~km~s^{-1}$ (dispersions down to $\sigma \sim 2~km~s^{-1}$)
- Metallicities from medium-resolution spectra with a precision of $\lesssim 0.15~\text{dex}$
- Abundances for ~20 elements from high-resolution spectra

*for metal-poor stars at magnitude ~19-22

Characterizing the Milky Way satellite population

- Currently 63 confirmed/likely/possible dwarfs
 - 79% have a measured radial velocity
 - 79% have a velocity dispersion or upper limit
 - 78% have a mean metallicity
 - 48% have high-resolution chemical abundances
 - 62% have a high-confidence classification

Observational challenges

(1) There aren't very many stars

Observational challenges

(2) There are going to be a lot of Rubin satellite candidates to follow up

• MW satellites as of 2024

• Toy model of what LSST may find

Observability of future MW satellite discoveries

Spectroscopy of faint/distant satellites requires ELTs

Drlica-Wagner et al. (2019)

Forecasted spectroscopic resource use

 Milky Way satellite follow-up in the Rubin era will take ~1.5 years of dedicated time on an 8m telescope

	Infrastructure	< 3m	3–5m	8m	25m
Dark Matter				Multi-object spectroscopy: 4000 hrs Near-IR imaging: 300 hrs Single-object spectroscopy: 1200 hrs	Multi-object spectroscopy: 400 hrs
Milky Way Halo Formation			Medium-band imaging: 5300 hrs	Multi-object spectroscopy: 6700 hrs	Multi-object spectroscopy: 670 hrs
Total On Sky Time			~ 1.5 years	~ 3.3 years	~ 0.3 year

Najita et al. (2016)

The low-luminosity frontier

- Luminosity function may extend to L=0
 - UNIONS 1/Ursa Major III: $M_V = 2.2 (M_* = 16 M_{\odot})$

The low-luminosity frontier

 A majority of satellites at M_v > -3.5 do not have firm classifications

Simon (2019, updated)

The classification challenge

• What is the nature of faint satellites with unresolved velocity and metallicity dispersions?

The classification challenge

• Can other chemical information robustly distinguish dwarf galaxies from clusters?

Simon et al. (submitted)

Non-spectroscopic classifications

Metallicity distributions from narrow-band imaging

Fu et al. (2023)

Non-spectroscopic classifications

 Separating DM-dominated from DM-free systems via mass segregation

Baumgardt et al. (2022)

The low-velocity dispersion frontier

 Velocity dispersions have been resolved down to ~2 km s⁻¹ (Sagittarius II, Crater II)

Simon (2019, updated)

What's required to resolve cold systems?

- For the faintest/coldest satellites, need >20 stars
- For systems with σ < 2 km s⁻¹, need better velocity precision

The binary frontier

- Long-term monitoring of 27 bright UFD stars
- 26% are binaries
- Implied binary fraction ~100%

Domani Sharkey

Sharkey et al. (in prep.)

The distance frontier

Coming soon

A long time ago in a galaxy far, far away....

 Pre-Rubin searches for ultra-faint satellites are limited to the Local Group

Only a handful of
objects fainter than
M_V ~ -7 are known
beyond the Milky Way

McQuinn et al. (2024)

The distance frontier

• Ultra-faint dwarfs will be discoverable to ~1.5 Mpc

Mutlu-Pakdil et al. (2021)

The distance frontier

- What can we learn from more distant dwarfs?
 - Environmental influence on star formation
 - Tidal effects

McQuinn et al. (2023)

Key future goals for spectroscopy

- Characterize the full Milky Way satellite population
- Understand the connection between ultra-faint dwarfs and more compact faint satellites
- Determine the behavior of the faint end of the L-[Fe/H] relation
- Investigate the properties of truly isolated ultra-faint dwarfs

Summary

- We are already struggling to get adequate spectroscopy of the faintest stellar systems
 - Follow-up of Rubin discoveries will be a challenge!
 - Need more efficient spectrographs and a lot of time
- Need to continue developing methods for classifying faint satellites
- We have a lot left to learn about the formation, evolution, and dark matter content of dwarf galaxies!