

Exploring the Chemical Evolution Pathways of the Extremely Metal-poor Dwarf Galaxy Leonessa

Joseph A. Breneman¹, Kristen B. W. McQuinn^{1,2}, Danielle A. Berg³, Alexander Menchaca³, O. Grace Telford^{4,5}, Andrew Dolphin^{6,7}, Gregory R. Zeimann^{8,3}, Max Newman¹

1. Rutgers University, Dept. of Physics and Astronomy; 2. STSci; 3. Dept. of Astronomy, The University of Texas at Austin; 4. Princeton University, Dept. of Astrophysical Sciences; 5. The Observatories of the Carnegie Institution for Science; 6. Raytheon; 7. Steward Observatory, University of Arizona; 8. Hobby-Eberly Telescope, The University of Texas at Austin;

Introduction

Extremely metal-poor (XMP) galaxies (gas-phase oxygen abundances of 12+log(O/H)≤7.35) in the nearby universe are low-mass, gas-rich systems that occupy the faint-end of the galaxy luminosity function. This makes them excellent laboratories for investigating galactic chemical evolution in the low-metallicity regimes of the mass- and luminosity-metallicity relations (MZR and LZR, respectively).

Here we present results from recent HST, GBT, KCWI, and HET observations of a newly discovered XMP galaxy, Leonessa. From these observations we quantify several of Leonessa's properties (see table Ξ for values). We then compare Leonessa, along with $\bigcup_{i=1}^{i}$ a sample of dwarf galaxies taken from the literature, $^{\Box}$ to well-established MZR, LZR and nitrogen-to-oxygen (N/O-O/H) trends found for nearby low-mass field dwarf galaxies [2,6,7]. We also add gas-to-stellar mass ratios where reported. Key Findings:

Properties of Leonessa

Value
10.05.12 154
+37:22:01.55
7.32 ± 0.04
-1.41 ± 0.2
-11.92 ± 0.09
31.01 ± 0.09
15.92 ± 0.66

- Leonessa XMP galaxy (12+log(O/H)=7.32±0.04) 15.92±0.66 Mpc away. It agrees with the MZR trend, but disagrees with the LZR trend.
- M_{μ}/M_{\star} anti-correlates to 12+log(O/H)
- Large scatter in XMP regime of LZR and N/O-O/H.

 29.59 ± 6.73 $(1.76 \pm 0.46) imes 10^{6}$ $(1.32 \pm 0.23) imes 10^{6}$ 1.33 ± 0.47

2.0

-1.5

1.0

- Fig. 1 presents a color image of Leonessa created from the HST ACS observations (F606W, and F814W
- Young, massive stars can be seen occupying the central star forming region, while redder stellar populations exist in the outskirts of the galaxy.
- To the NW and SE of the central star forming region, we see strong nebular emission defining faint, curve-like structures.

Data & Results

Figure 2: Color-Magnitude Diagram

• In Fig. 2 we present a CMD of the 194 stars recovered from the HST observations of Leonessa using DOLPHOT. A well-defined main sequence and red giant branch are

Fig. 5 compares Leonessa, along with a sample of dwarf galaxies, to

Conclusions

Figure 5: LZR, MZR, N/O-O/H

8.5 Luminosity-Metallicity Relation (LZR)

- spectrum for Leonessa. The line displays a thin Gaussian profile, indicative of a quiescent gas disk, with a low velocity dispersion.
- Using HI 21cm flux and TRGB distance we calculate a gas-mass of $\log(M_{\mu}/M_{\odot})=6.25\pm0.11$ [3]. • **Fig. 4** presents the [OIII] λ 4363

- found at a F606W-F814W color of ~-0.3 and ~1.0, respectively.
- From the measured tip of the red giant branch (TRGB) magnitude (blue horizontal line in **Fig. 2**) we determine a distance to Leonessa of 15.92±0.66.
- Using the TRGB distance we calculate a stellar mass of $\log(M_*/M_{\odot})=6.12\pm0.08$, using SDSS *r*- and *i*-band magnitudes [1,4].
- The refined distance finds the system located within the Cnr-CMi-Hyd void [5], with the nearest neighboring galaxy at a proximity of ~1.9 Mpc.

- well-established LZR, MZR,
- and N/O-O/H trends (solid black lines) for nearby galaxies.
- XMP galaxies show a significant scatter away from the trends on all three planes, with the LZR having the greatest dispersion.
- When gas-to-stellar mass ratios (Fig. 5; colobar) are added to the planes they show a clear anti-correlation with metallicity.

References

[1]Bell, E. F. et al., The Astrophysical Journal Supplement Series, vol. 149, no. 2, IOP, pp. 289–312, 2003. [3]Haynes, M. P. et al., The Astrophysical Journal, vol. 861, no. 1, IOP, 2018 [5]Pustilnik, S. A. et al., Monthly Notices of the Royal Astronomical Society, vol. 482, no. 4, OUP, pp. 4329–4345, 2019

[2]Berg, D. A. et al., The Astrophysical Journal, vol. 754, no. 2, IOP, 2012 [4]Hsyu, T. et al., The Astrophysical Journal, vol. 863, no. 2, IOP, 2018 [6]van Zee, L. et al., The Astrophysical Journal, vol. 636, no. 1, IOP, pp. 214–239, 2006 [7]Vincenzo, F., et al., Monthly Notices of the Royal Astronomical Society, vol. 458, no. 4, OUP, pp. 3466–3477, 2016