Sifting for a Stream: An Analysis of the Morphology of the 300S Stellar Stream Benjamin Cohen^{1*}, Alex Ji¹, Peter Ferguson², Sergey Koposov³, and the S5 Collaboration 1. University of Chicago, 2. University of Wisconsin-Madison, 3. University of Edinburgh, *Contact: benmckcohen@uchicago.edu

Introduction and Background

Stellar Streams as Laboratories for Small Scale Milky Way Structure

- Dark matter models predict different small-scale structures.
- Stellar stream perturbations indicate potential interactions with dark matter halos, including star-free halos.
- Measuring stream morphology can probe this small-scale structure.

Modeled stream perturbations in GD-1 under different encounter parameters [1].

- Retrograde orbit with high eccentricity [2] • Galactic pericenter: ~4.1kpc • Galactic apocenter: ~60kpc • Extends from RA ~144° to

- ~168°
- [FeH] = -1.35, Age =12.5 Gyr /3/
- Likely was a globular cluster progenitor [3]

visible objects labelled.

Objective

Improve models of stream morphology in a manner robust to background contamination.

Reobtaining a Distance Gradient

- We identify one RR Lyrae (RRL) and no Blue Horizontal Branch stars consistent with our proper motion filters and the approximate distance.
- 0-point determined by RRL star.
- Slope determined by high -15purity RGB catalog from S5 [4]. Slope fit to their deviations fit is slightly closer and more gradual than the Fu from an isochrone as a function of ϕ_1 .
- Result in agreement with distance gradient from [2] once that gradient is transformed into our ϕ_1 and ϕ_2 space.
- ユ 16.0 15.6
- et al. 2018 [2] gradient, though they agree.

The 300S Stellar Stream

- Quadratic fit to S5 member [4] PMs with 1.5σ cut filters. regions.
- $\phi_1 < -12.5$ cut due to Sgr contamination. • Signal vanishes at $\phi_1 > 5$.

- New distance gradient empirically fit on Sgr's response to the 300S matched filter.
- Polynomial fit on ratio of Sgr signals under
- 300S and Sgr gradients along Sgr's axis (A). Model of Sgr fit onto the stellar density map
- filtered using the Sgr distance gradient (B).

- width, and ϕ_2 as functions of ϕ_1 . Background and Sgr also modeled with splines.
- Assume the data are Poisson distributed in each spatial bin. The models then represent the spatial distribution of the Poisson's mean.
- Models fit to number density maps with MCMC as in [5].
- For better comparison, Gaia model's central number density Sgr-Sub model's central number density.

Final stream models. (Top) Stream tracks and half-widths overplotted. (Bottom) Stream central number density splines with 16% – 84% quantiles overplotted.

Conclusions

Both methods of signal extraction yield agreeing stream parameters across 300S's footprint. The stream parameters vary relatively smoothly with no visible kinks. Intensity drops off between the peaks, indicating a slight gap in the stream. Further work necessary to verify behavior at $\phi_1 < -12.5$ where Gaia model is contaminated.

lacksquare

Stream model: cubic splines for central number density, gaussian

scaled so its maximum value is equivalent to the maximum of the

- Journal, 880(1), 38. https://doi.org/10.3847/1538-4357/ab2873 [2] Fu, S. W. et al. (2018). The Origin of the 300 km s-1 Stream near Segue 1. The Astrophysical Journal, 866(1), 42. https://doi.org/10.3847/1538-
- 4357/aad9f9
- https://doi.org/10.3847/1538-4357/ac46d3
- https://doi.org/10.3847/1538-3881/ac3492

-20

Sgr model transformed into the map filtered with 300S's gradient using transformation polynomial (from B to C).

This transformed Sgr model allows us to subtract out the influence of Sgr and extract the 300S signal (from D to E).

Transformed Sgr Model Comparing Stream Geometries --- Sgr-Sub Track Sgr-Sub Nodes -15Central Number Density Splines --- Gaia Scaled Track References [1] Bonaca, A. et al. (2019). The Spur and the Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo. The Astrophysical

[3] Usman, S. A. et al. (2024). Multiple Populations and a CH Star Found in the 300S Globular Cluster Stellar Stream. https://arxiv.org/abs/2401.02476 [4] Li, T. S. et al. (2022). S 5: The Orbital and Chemical Properties of One Dozen Stellar Streams. The Astrophysical Journal, 928(1), 30.

[5] Ferguson, P. S. et al. (2021). DELVE-ing into the Jet: A Thin Stellar Stream on a Retrograde Orbit at 30 kpc. *The Astronomical Journal*, 163(1), 18.

[6] Vasiliev, E., Belokurov, V., & Erkal, D. (2020). Tango for three: Sagittarius, LMC, and the Milky Way. Monthly Notices of the Royal Astronomical Society, 501(2), 2279-2304. https://doi.org/10.1093/mnras/staa3673