Modeling Low-mass Galaxy Star Formation Histories in the Local Universe
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Modeling SAGA Satellites with updated UniverseMachine-SAGA Goal: Better understand the cosmological context of environmental quenching by empirically EDEN: Exploring Disks Embedded in N-body simulations
forward modelling star formation histories of low-mass galaxies (M, < 10°Mg) using updated
A e 1‘ UniverseMachine. New constraints from SAGA satellites and SDSS isolated galaxies (Fig 1.). + Goal: Establish the cosmological context for baryons impact on subhalos over a wide range of

SAGA host galaxy disk masses and growth histories.
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satellites o = EDEN: Symphony MilkyWay simulations (45)+Symfind particle-tracking halo finder. Analytic
= Star formation is dependent on halo mass dependence and halo assembly at fixed halo mass: disk potentials grow self-consistently according to UniverseMachine predictions,

P(SFR |halo mass, assembly history, redshift).
= Paint SFR onto halo merger trees from simulations, integrate to obtain galaxy catalogs. alo 416
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® > > * New low-mass quenching model: enable non-monotonic fQ(vypeax) that accounts for
M* M* low-mass galaxy quenching. This new combined model is named as UM-SAGA.
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Figure 1. lllustration of the environment (left) and data statistics (right) of the SAGA satellites within Milky-Way Mass Mass Mass MW obs. | | =8 Fiducia
(MW) mass hosts and the SDSS isolated galaxies that are > 1.5 Mpc away from any more massive neighbors. 1.2] | B Mepucx 23
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Extrapolatlon Figure 3. New low-mass quenching model (left) and UM DR1 low-mass galaxy-related modules in UM-SAGA. .E % o N H‘gﬁ ., j_4|_|
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N = Halo mass and assembly history largely describes dwarf galaxy formation including number S 0.4, Cantun + 2020 fh_m,,; v
\.\ densities, mass trend and radial trends of satellite quenching for M, > 107'5M@ (Fig.2). GK + 2017 (sim)
“a = A strong correlation between halo assembly history and SFR is required to consistently 0ol 100 kpe, Mpear 2> 300mpyy
~ . . . . . . ' 7 ' 1n-1 '
0.0- AN model the huge difference in satellite and field dwarf galaxy quenched fractions (Fig.3). \ / 10 10=° 0 S
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N \ , 10 Strong SFR — Avy. correlation 7 8 9 10 11 L0 Mild SFR — Aty correlation 7 8 9 10 11 Figure 5. Subhalo abundance suppression due to disk-enhanced mass loss versus disk-to-halo mass ratio. From left
0.4 '\\ N SAGA satellites GAMA (This work) 1.0 _\ (. from UM DR1) Loy * to right, heavier disks are embedded into the MW host halos and fewer subhalos survive.
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024 . e « $ GAMAal = Larger disks leads to fewer subhalos in a MW-mass (M, ~ 1012Mg) halo.
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S L P Ll 0.4F 5 Data 0.4 j % SAGA srelite = Re-simulating 9 halos with 2.5x heavier disks causes more subhalo mass loss.
Mo T e = Subhalo abundance is most suppressed in heavy MW-like stellar disks.
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= New constraint from HST-CMD star formation histories of MW ultra-faint-dwarfs.
Figure 2. The quenched fractions as a function of stellar mass for the SAGA satellites (green), SDSS isolated galaxies Figure 4. Left: UM-SAGA best-fit model, strong correlation {r. — 1) between SFR and halo assembly history, = Constrain new model on MWest simulations with tailored LMC and GSE mergers.

well-describes the SAGA-satellite and SDSS isolated low-mass galaxies. Right: Mild (UM DR1) correlation of SFR

(blue), and GAMA Survey (black) galaxies in diverse environments. Solid curves are predictions from the new and halo assembly history; produces smaller-than-observed differences in satellite and isolated quenching.

UM-SAGA model jointly constrained by SAGA, SDSS, and GAMA low-mass galaxies.
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