The Merian Survey: characterizing dark matter and feedback in star-forming dwarf galaxies with medium-band filters on DECam

Yifei Luo
University of California Santa Cruz

 Collaborators: Alexie Leauthaud (co-PI), Jenny Greene (co-PI), Shany Danieli, Erin Kado-Fong, Song Huang, Ting Li, Jiaxuan Li, Abby Mintz, Yue Pan, Robert Lupton, Lee Kelvin, Robel Geda, Vivienne Baldassare, Erik Wasleske, Diana Blanco, Zheng Cai, Yifan Li, Mingyu Li, Xiaojing Lin, Alyson Brooks, Diliys Ruan, Annika Peter, Joy Bhattacharyya, Arka Banerjee, …
The Merian Survey

- Two medium-band filters (N708/N540) for Hα and OIII in order to find ~100,000 dwarf galaxies ($10^8 - 10^9 M_{\odot}$) at $z \sim 0.1$

- 64 full nights on the CTIO-4m Dark Energy Camera (DECam) to cover 800 deg2 in HSC-SSP field

- Core science goals: constrain dark matter and feedback in star-forming dwarf galaxies
Weak gravitational lensing

- Constrain dark matter halo out to Rvir
- Need large sample of lenses

Leauthaud et al. 2020
Simulations shows HSC can already detect enough low-mass galaxies down to 10^8 Msun with high completeness to get a decent lensing signal.
Improve photo-z’s at z<0.2

• Optical broad-band photo-z’s are not optimal for dwarf galaxies at z<0.2

• Quenched fraction for galaxies in mass range $10^8 - 10^9 \, M_\odot$ is low (~5%)

• Emission lines from HII regions can provide additional information to improve the photo-z precision

Mao et al. 2024
Danieli et al. submitted to ApJ
Tradeoffs in the central wavelength & filter width

- longer central wavelength & wider filter width = larger volume = higher lensing S/N
- longer central wavelength = fainter dwarf galaxies = longer exposure time = less volume with fixed survey time
- wider filter width = weaker S/N of emission line detection = fewer dwarfs detected
Optimize lensing S/N for different filter design

Luo+2024
Merian filter transmission across the DECam focal plane

Luo+2024

![Graph showing filter transmission across different wavelengths with corresponding redshift for Hα.]
Merian Wide (~800 deg^2):

- 4x10 min for N708 (Halpha)
- 4x15 min for N540 (OIII)

Merian Deep (~2 deg^2):

- 40x10 min for N708 (Halpha)
- 40x15 min for N540 (OIII)

Danieli et al. submitted to ApJ
Merian has finished $>500 \, \text{deg}^2$ with decent depth

Danieli et al. submitted to ApJ
Merian data reduction pipeline: LSSTpipe

- Merian DR1: 230 deg^2: full depth full color region
- Photometry on HSC broad-bands based on Merian footprint
- Gaussian-aperture-and-PSF (GAAP) photometry
- One of the first survey reduced with LSSTpipe

Danieli et al. submitted to ApJ
Merian spec-z calibration sample

• Collecting spec-z’s with Keck/DEIMOS, Magellan/IMACS and DESI down to $i \sim 23$ mag

• >6000 spectra for Merian objects have been collected (and increasing)

• Combining redshifts from previous surveys (COSMOS, GAMA, SDSS, etc.)
Merian template fitting photo-z’s achieve a precision of ~0.015

Luo et al. in prep
Medium-band flux excess for spec-z confirmed galaxies

Mintz et al., submitted to ApJ (go see her poster #25!)
Satellite properties around MW analogs

Pan et al. in prep (go see her poster #30!)
Beyond photo-z point estimation

Credit: Yue Pan
First Merian dwarf lensing signal

- ~30% of the Merian final footprint - lensing S/N > 10
- More modeling is underway

Luo et al. in prep
• LSST can constrain dwarf lensing with much higher lensing S/N
• Medium-band surveys for LSST should be considered
Merian filters N708/N540 + DESI-2 filters
Summary

- Merian is a new medium-band imaging survey with 64 nights on DECam to cover 800 square deg in the HSC SSP wide field
- Two new medium-band filters N708 and N540 will find $\sim 100,000$ dwarf galaxies ($10^8 - 10^9 M_\odot$) at $0.05 < z < 0.1$
- Merian photo-z’s provide a precision of ~ 0.015, could be improved with $p(z)$
- We have detected weak lensing signal around dwarf galaxies within 30% of Merian total footprint
- More Merian early science papers will be out soon!