Advancing a search for isolated sub-galactic dark matter halos

Keith Bechtol KICP-20: Cosmology past, present, and future 6 June 2024

Cosmic Microwave Background

Detailed mapping between luminous galaxies and their invisible dark matter halos across 13 billions years of cosmic history and 7 orders of magnitude in dark matter halo mass

Chabanier 2019 arXiv:1905.08103

Threshold of galaxy formation??

Slide adapted from Ethan Nadler

Threshold of Galaxy Formation

What is the minimum halo mass for galaxy formation?

What is the galaxy-halo connection at the extreme faint end of the galaxy luminosity function?

Galaxy-Halo Connection

Abundance Matching (simplified):

most massive galaxies by stellar mass tend to occupy the most massive dark matter halos

Halos hosting the least luminous galaxies

 $M_{min} < 3.2 \times 10^8 \,\mathrm{M_{\odot}} (95\% \,\mathrm{CL})$ $v_{peak} < 21 \,\mathrm{km \, s^{-1}} (95\% \,\mathrm{CL})$

Detected MW satellites likely occupy halos of mass $M_{peak} \sim 10^8 M_{\odot}$ (95% CL)

Halos hosting the least luminous galaxies

Semi-analytic modeling suggests that molecular hydrogen H₂ cooling and UV background are needed to explain observed properties of Milky Way satellite population

LSST Camera delivered to Cerro Pachón

Primary-Tertiary (M1M3) mirror with silver coating at Cerro Pachón

Future comprehensive census of satellite galaxy population around Milky Way-mass host (e.g., Rubin Observatory, Euclid, Roman) could provide evidence at ~1 σ level for galaxy formation cutoff at ~10⁸ M_{\odot}

Enhanced sensitivity achieved by probing fainter luminosities and lower surface brightness

Galaxy Occupation Fraction

Serendipitous discovery of ultra-faint galaxy at ~35 Mpc in foreground of JWST deep field

Stellar mass ~ $10^5 M_{\odot}$ $M_V \sim -7$ Half-light radius ~230 pc

Correlation between internal velocities and sizes of dwarf galaxies is a sharp probe of small-scale dark matter properties

arXiv:2306.04674

Searching for Isolated Sub-galactic Dark Matter Halos

Enhanced sensitivity to dark mark microphysics

Minimizing uncertainties associated with baryonic physics

Complementarity of multiple techniques (e.g., strong lensing, stellar streams)

Strong lensing methods sensitive to low-mass dark matter halos

Flux Ratio Anomalies

Nierenberg et al. 2020 arXiv:1908.06344

Image positions and relative magnifications of quad quasars

narrow-line emission on mas scales to avoid microlensing; see also Nierenberg et al. 2024 and Keeley et al. 2024 for JWST

Gravitational Imaging

Vegetti et al. 2010 arXiv:1002.4708

Astrometric anomalies of multiply-imaged arcs

Angular resolution is essential for gravitational imaging technique

e.g., 10⁸ solar mass perturber induces ~10 mas astrometric anomalies for lensed images Metcalf & Madau 2001 Chen et al. 2007

Global VLBI has achieved astrometric precision 0.01-0.05 mas for lensed images

e.g., Spingola & Barnacka 2020

Very long baseline radio interferometry (VLBI) for highest angular resolution imaging

Proposed Next-Generation Very Large Array (ngVLA) Telescope Configuration

The M87 Jet

Most bright radio sources are jetted AGN

Sources at redshifts 1 < z < 3 have scale of ~8 pc / milliarcsecond

Almost all VLBI sources have structure on milliarcsecond scales

median ~ 8 mas 20-35% > 16 mas

 $\label{eq:VLBI} \begin{array}{l} \mbox{Predict} ~ ~10^6 \mbox{ VLBI sources} \\ \mbox{with } S_{1.4GHz} > 1 \mbox{ mJy in a } 3\pi \mbox{ survey} \end{array}$

Rezaei et al. 2023 arXiv:2308.15859

Milliarcsecond-scale resolution for lensed arcs allows detailed characterization of main-deflector (e.g., mass profile, multipole structure) and external potential

Image Plane

Source Plane

Powell et al. 2022 arXiv:2207.03375

Simulated schematic representation of a lensed AGN jet using macromodel for main deflector + a single line-of-sight low-mass halo perturber

Simulation of astrometric anomalies for hotspots color-coded by "image"

Simulation of astrometric anomalies for hotspots color-coded by "image"

High redshift lens + sources offer sensitivity to isolated line-of-sight dark matter halos

High redshift lens + sources offer sensitivity to isolated line-of-sight dark matter halos

Main Deflector Redshift

~90% of detectable low-mass perturbers are expected to be line-of-sight halos for many radio lenses

see also Hsueh et al. 2019

Prior to this year, only ~40 published radio strong lenses

mostly from JVAS and CLASS fluxlimited VLBI surveys ~20 years ago (lensing rate of ~1:600)

New radio lens search enabled with **VLA Sky Survey (VLASS)**

highest angular resolution near-all-sky radio survey to date

3" FWHM resolution at 2-4 GHz

declination > -40 deg $34,000 \text{ deg}^2$

2 million sources in first epoch Gordon et al. 2021

VLASS angular resolution is not sufficient to resolve the typical Einstein radius of galaxy-scale strong lenses (~1 arcsecond), but is sufficient to provide associations with optical imaging surveys (e.g., DES, DECaLS)

Optical surveys assist radio lens discovery

Optical images of lens candidates

VLASS radio contours in green

Martinez et al. 2024 arXiv:2404.09954

Optical surveys assist radio lens discovery

New radio strong lenses found in pilot follow-up campaign w/ VLA A-config w/ 0.2" resolution (~100 sec integration per target)

VLASS contours in red

Gaia quasar positions in green

Efficient method to identify strongly lensed radio sources by combining wide-area optical and radio surveys

Martinez et al. 2024 arXiv:2404.09954

Optical surveys assist radio lens discovery

New radio strong lenses found in pilot follow-up campaign w/ VLA A-config w/ 0.2" resolution (~100 sec integration per target)

VLASS contours in red

Gaia quasar positions in green

Efficient method to identify strongly lensed radio sources by combining wide-area optical and radio surveys

Martinez et al. 2024 arXiv:2404.09954

Likely at least one additional component besides AGN core is strongly lensed

Optically selected lensed QSOs w/ VLASS counterparts are bright enough to target for detailed characterization

In next months, expanding radio lens discovery campaign w/ sample of 38 additional targets

See also identification of radio lenses in deep observations of radioquiet lensed optical QSOs

> Dobie et al. 2024 arXiv:2311.07836

Jackson et al. 2024 arXiv:2403.19357

Stellar streams as dynamical tracers for lowmass dark matter halos

DGSCS 2024: "Dwarf Galaxies, Star Clusters, and Streams in the LSST Era" workshop @ KICP, 8-11 July 2024

Kyle Boone

Miranda Gorsuch

Peter Ferguson

Gillian Cartwright

Michael Martinez

Yjan Gordon

Julian Beas-Gonzalez

Mitch McNanna

Jimena Gonzalez

Megan Tabbutt

Near-field Cosmology

Kyle Boone

Miranda Gorsuch

Peter Ferguson

Gillian Cartwright

Michael Martinez

Yjan Gordon

Julian Beas-Gonzalez

Mitch McNanna

Jimena Gonzalez

Megan Tabbutt

Strong Lensing

Testing the collision-less Cold Dark Matter paradigm brings together **initial conditions, dark matter microphysics, and galaxy formation**

Combination of Rubin Observatory + space-based observations of resolved stellar populations in the Local Volume (and beyond) offer possibility to reveal the **threshold of galaxy formation** in the sense of a stellar population at z ~ 0

• Note: numerical simulations predict that the first Population III stars formed in pristine dark matter minihalos with masses of $10^5 - 10^6 M_{\odot}$ at z ~ 20-30

Emerging capability to use variety of gravity-based probes (e.g., strong lensing) to investigate **sub-galactic halos**

- Access to line-of-sight ~10⁶ M_☉ mass halos via milliarcsecond-scale image resolution and sub-milliarcsecond astrometry of radio VLBI
- Rubin Observatory + space-based imaging surveys + radio surveys (including wide-area VLBI) anticipated to yield thousands of radio strong lenses and candidates for detailed VLBI characterization

Thank you to my friends at KICP who have been the inspiration for this work — congrats on 20 years!