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Cumulative Detections/Candidates
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01+02+03 = 90, O4a* = 81, 04b* =

* O4a and O4b entries are preliminary candidates found online.
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01+02+03 = 90, O4a* = 81, 04b* = 24, Total = 195

200 1 * O4a and O4b entries are preliminary candidates found online.
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01+02+03 =90, O4a*x =81, 04b* = 24, Total = 195

1* O4a and O4b entries are preliminary candidates found online.
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01+02+03 = 90, O4a* = 81, 04b* =

* O4a and O4b entries are preliminary candidates found online.

24, Total = 195

i\

'i

= /4

il
o3

\

Y

i

de

O
A
O

0 100 200 300 400
LIGO-G2302098(ed93e4e8), updaled on 2 June, 2024

500 600 700 800

900 1000 1100 1200
Time (Days)

Credil: LIGO-Virgc-KAGRA Collaboraticn




01+02+03 = 90, O4a* =81, 04b* = 24, Total = 195

1* O4a and 0O4b entries are preliminary candidates found online.
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1* O4a and 0O4b entries are preliminary candidates found online.
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01+02+03 =90, O4a*x =81, 04b* = 24, Total = 195

* O4a and O4b entries are preliminary candidates found online.
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Observing Binary Black Holes

How bigis each black hole? How fast are they spinning?
Where are the spin axes pointing?

oo 0 ©-

How far away and long ago did they merge?




From Single Events to a Population: Hierarchical Bayesian Inference

* Introduce a population model that
describes the distributions of
masses, spins, redshifts across
multiple events.

101 -

. Q ]
» Example: Fit a power law to black s
hole masses.
109 -
* Take into account measurement Minimum mass €'
uncertainty and selection effects. | | Maximummass &
0 10 20 30 40 50 60
* Don'’tjust fit the “detected Black hole mass

distribution!” (Essick & MF 2024)



Cosmology with binary black hole (and neutron star) mergers

LVK ApJ 949 76 (2023)
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Probing cosmic history with gravitational waves
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LVK PRX 13 011048 (2023) 8 Redshift

Method based on MF, Farr & Holz 2018 ApJL 863 L1



Merger rate follows progenitor formation rate with a delay time

progenitor binary dotible
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Chruslinska, Annalen der Physik 536 2 2200170 9



LIGO-Virgo-KAGRA's Oldest Black Holes

We have probably observed black holes that formed in the Universe’s first billion years
(Even though they all merged within the last 8 billion years)

Z?OOr?; (Zmerge) B 8

- ngogr?; (Zmerge)
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MF & van Son, ApJL 957 1.31 (2023)
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https://iopscience.iop.org/article/10.3847/2041-8213/ad0560

If we know the progenitor formation rate, we can measure delay time distribution
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MF & Kalogera 2021, ApJL 914 L30 1



Delay time distribution informs the population of mergers’ host galaxies
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Vijaykumar, MF, Adhikari & Holz arXiv:2312.03316
See also Adhikari, MF, Holz, Wechsler & Fang 2020
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Compare against theoretical predictions for delay time distribution

MF & van Son (2023)
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Alternatively, if we know the delay time distribution, we can infer the
progenitor formation rate
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MF & van Son (2023) Formation redshift ziorm
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MF & van Son (2023)

Progenitor formation rate divided by star formation rate:
Efficiency

0 1 2 3 4 5! 0
Formation redshift z¢,;m
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MF & van Son (2023)

Efficiency depends on metallicity
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Average metallicity

MF & van Son (2023)

Infer chemical enrichment history

a = —1 = —0.35
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Do black holes grow via repeated mergers?




Using spin to distinguish hierarchical mergers

* 2g black holes tend to spin at dimensionless spin magnitude ~0.7 (e.g., MF,
Farr & Holz 2017)

* Hierarchical mergers are dynamically assembled, so spin tilts are randomly
oriented

* Fixed fraction of hierarchical mergers will have large, misaligned spins

(e,_.

19



Hierarchical mergers may account for all black holes above ~ 60 M,
but are a very small contribution at lower masses
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MF, Kimball & Kalogera ApJL 935 L26 (2022)



Connection to supermassive black holes?

As a first step, how much mass is available?
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The next 20 years:
Next generation gravitational-wave detectors

Redshift
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Gravitational-wave probes of the high-redshift Universe

* Gravitational waves probe the metallicity-specific star-formation history:

* Delay times between progenitor formation and black hole merger imply that we
are already probing star formation up to z ~ 6

 Evolution of the binary black hole merger rate with redshift implies a preference
for low-metallicity progenitors

* Do stellar-mass black hole mergers inform the supermassive black hole population?
* Mergers can produce black holes heavier than 100 solar masses

* No clear signatures of hierarchical black hole mergers in the LVK band (yet)
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Learning from gravitational-wave populations
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Learning from gravitational-wave populations

* How are black holes and neutron stars made?
* Where is the pair-instability mass gap?
* [s there a mass gap between neutron stars and black holes?
* What are the natal spins of neutron stars and black holes?
* How do neutron stars and black holes find merger partners?
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Learning from gravitational-wave populations

* How are black holes and neutron stars made?
* Where is the pair-instability mass gap?
* [s there a mass gap between neutron stars and black holes?
* What are the natal spins of neutron stars and black holes?
* How do neutron stars and black holes find merger partners?
* Where and when do black holes and neutron stars merge?
* How does the population evolve across cosmic time?
* Does their progenitor rate follow the (low-metallicity?) (globular cluster?) star formation rate?
* What are the host galaxies of gravitational-wave sources?
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Learning from gravitational-wave populations

* How are black holes and neutron stars made?
* Where is the pair-instability mass gap?
* [s there a mass gap between neutron stars and black holes?
* What are the natal spins of neutron stars and black holes?
* How do neutron stars and black holes find merger partners?
* Where and when do black holes and neutron stars merge?
* How does the population evolve across cosmic time?
* Does their progenitor rate follow the (low-metallicity?) (globular cluster?) star formation rate?
* What are the host galaxies of gravitational-wave sources?
* What are the cosmological implications of gravitational-wave sources?
* Standard sirens may help arbitrate the Hubble constant tension
* Probe dark energy via background expansion and modified gravitational-wave propagation
* Learn about large scale structure, gravitational-wave lensing
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