Searching for the Universes most energetic particles

Toshihiro Fujii <u>toshi@omu.ac.jp</u> Osaka Metropolitan University (OMU) Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP) 20th Anniversary of the KICP Celebration June 6-8, 2024

© Osaka Metropolitan University/Kyoto University L-INSIGHT7Ryuunosuke Takesh

Congratulations on KICP 20th years anniversary!!

Taken from video message for wedding of my friend (scientist)

More memories

Birthday of cosmic rays (Aug. 7th 1912)

- Energetic particles in the universe
- Discovered by V. F. Hess (1912), Nobel Prize Physics (1936) Ş
- Proton(90%), Helium(8%), electron and heavier nuclei

https://www.sciencedirect.com/journal/astroparticle-physics/vol/53/suppl/C

Grandson of V. F. Hess

V. F. Hess, Phys. Z. 13, 1804 (1912) 5350 m

W. Kolhörster, Physikalische Zeitschrift 14 (1913) 1153–1156. 6300 m, 9300 m (1914)

Aug. 7th, 2012

James W. Cronin

Dietrich Müller

Toshihiro Fuji

Emerging "<u>Charged particle astronomy</u>" with Ultra-High-Energy Cosmic Rays (UHECRs)

© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)

Low energy cosmic rays

Greisen–Zatsepin–Kuzmin (GZK) Cutoff

- Interaction between >50 EeV proton and CMB via pion production
- Ş Heaver nuclei also interact via photo-disintegration
 - Mean free path: **50-100 Mpc (cosmological** neighborhood)
 - Cutoff feature of energy spectrum above 50 EeV
 - The universe's largest-scale interaction between Ş the most energetic particles and the oldest photons

K. Greisen, PRL 16 (17): 748–750. (1966), G.T. Zatsepin and V.A. Kuz'min, JETP Letters. 4: 78–80 (1966)

$$p + \gamma_{\rm CMB} \to \Delta^+ \to p - A^+ \to p - A^- N' \to A^- \Lambda A^-$$

Planck Collaboration

Source candidates and UHECR "astronomy"

Active galactic nuclei

A. M. Hillas, Astron. Astrophys., 22, 425 (1984)

 $\left(\frac{E_{\max}}{100 \,\mathrm{EeV}}\right) \le Z$

Ş

Ş

Gamma-ray bursts

New physics

$$Z\left(\frac{B}{10\,\mu\text{G}}\right)\left(\frac{R}{10\,\text{kpc}}\right)$$

Image credits: DESY, Science Comm. Space News, NASA

"Hillas" condition

Limitation of "nearby" sources due to GZK cutoff

Less deflections of Galactic/extragalactic magnetic fields

Directionally correlations between **UHECRs** and nearby **inhomogeneous sources** to identify their origins

A next-generation "astronomy" using charged particles

How to detect extremely infrequent UHECRs?

Unexpectedly "Seeing" the extensive air showers by Subaru HSC

Direct detection of Subaru HSC CCDs

Altitude 4139 m, Mauna Kea, Hawai **Optical and Infra-red telescope** 8.2 m diameter mirror 34' x 27' field of view

CCD size 30 mm x 60 mm

116 CCDs

Image credit: https://subarutelescope.org

HSC	HSCImage _{教育}	¢
	Land Type I I I I I I I I I I I I I I I I I I I	

App Store (Mac)

10'mm

S. Kawanomoto, T.Fujii et al., Scientific Reports 13:16091 (2023)

Dark Energy Survey

https://www.darkenergysurvey.org/

How to detect extremely infrequent UHECRs?

Surface detector array

© Ryuunosuke Takeshige and Toshihiro Fujii (L-INSIGHT, Kyoto University)

Extensive air showers

Fluorescence detector

Observing extensive air showers and mass composition¹⁵ **Fluorescence detector (FD)**

No GZK cutoff in spectrum?

at highest energies?

J. Cronin, Nucl.Phys.Proc.Suppl. 138:465 (2005)

 $(\mathrm{gm}/\mathrm{cm}^2)$ Xmax

Latest UHECR observatories

Google Earth

- Telescope Array Experiment (TA)
 - Utah, USA
- 2008~, 700 km²
 - $\stackrel{\texttt{\&}}{\to} \text{TA} \times 4 \rightarrow 3000 \text{ km}^2$
- Pierre Auger Observatory (Auger)
 - Malargüe, Argentina
- PIERRE 2004~, 3000 km²
 - AugerPrime upgrade scintillator + radio + buried muon detector

Credit: Telescope Array Collaboration, H. Oshima

Energy (eV)

A. Coleman et al., Astropart. Phys. 149, 102819 (2023)

Gradually increase to the heavier composition above 3 EeV

R.A. Batista et al., Front.Astron.Space Sci. 6 (2019) 23

Anisotropy of UHECRs (10 EeV)

Northern TA ApJL, 898:L28 (2020) *E*_{TA}> 8.8 EeV

-90

S analys oint

- Significant (> 5σ) large-scale anisotropy observed by Pierre Auger Observatory
 - 125 degrees away from Galactic Center

Supporting the extragalactic origins

Ankle (*E*_{TA}>10 EeV, *E*_{Auger}> 8.86 EeV)

Converted to

Galactic coordinates

T. Fujii, PoS (ICRC2021) 402 (2021)

"Deciphering" magnetic fields

Synchrotron emission at 30 GHz

IMAGINE project (arXiv:1805.02496)

Cutoff (*E*_{TA}>52.3 EeV *E*_{Auger}>40 EeV), ~**1000 events**

No excess from Virgo cluster, dubbed "Virgo scandal"

Isotropic distributions of UHECRs than our (optimistic) expectation Ş

50 EeV skymap

T. Fujii et al., PoS (ICRC2021) 291 (2020)

Intriguing intermediate-scale anisotropies (~20 degrees) such as hot/warm spots

★ : Starburst galaxies ◆ : Active galactic nuclei >100 EeV of TA 15-years and Auger 17-years

No obvious clustering appeared

2021 May 27, 04:35:56 AM Detection of "Amaterasu" particle

© Toshihiro Fujii, L-INSIGHT, Kyoto University and Ryuunosuke Takeshige

Published in TA Collab. Science 382, 903 (2023)

Arrival direction of Amaterasu particle

E = 244 ± 29 (stat.) +51,-76 (syst.) EeV Ş

- **Unexpectedly, come from the Local Void**
- No promising astronomical source candidates

Ş

ĕ

- **Possible source region** (Unger and Farrar, arXiv:2312.13273)
- Monopole (Frampton, arXiv:2403.12322)
- **Binary neutron star merger** (Farrar, arXiv:2405.12004)
- **Ultra-heavy** composition like Te or Pt (Zhang+, arXiv:2405.17409)

Target : > 10^{19.5} eV, ultrahigh-energy cosmic rays, neutrino and gamma rays + Huge target volume (10x Auger or TAx4) \Rightarrow Fluorescence detector array Fine pixelated camera

Smaller optics and single or few pixels

Fluorescence detector Array of Single-pixel Telescopes

Too expensive to cover a huge area

Low-cost and simplified telescope

Fluorescence detector Array of Single-pixel Telescopes

Fluorescence detector Array of Single-pixel Telescopes

FAST telescope

4 PMTs (20 cm diameter) 1 m² aperture (UV filter) Segmented mirror in 1.6 m diameter

Validations of the FAST concept

Feb. 2012

A conceptual design for a large ground array of **Fluorescence Detectors**

EUSO-TA optics

D. Mandat et al., JINST 12, T07001 (2017)

T. Fujii et al., Astroparticle Physics 74 (2016) 64-72

M. Malacari et al., Astroparticle Physics 119 (2020) 102430

"FAST" installation and scientific goal

Summary and future perspective

Origins of UHECRs are still inconclusive... I remind the word from James W. Cronin that "The greatest pleasure a scientist can experience is to encounter an unexpected discovery."

"I hope you can bring the single pixel fluorescence detector to practical application. While most of my colleagues are pleased with the results of Auger, I am disappointed we failed to find sources. Instrumentation like yours may make that possible some day." James W. Cronin, From email received in March 2016

Receiving a baton from Jim

