The Radio Neutrino Observatory in Greenland (RNO-G): Prospects and status

Kaeli Hughes
Assistant Professor @ Ohio State
Former KICP Graduate student and KICP Associate Fellow

KICP 20th Anniversary
June 7, 2024
My Time at KICP

- Graduate Student: 2017-2022
- KICP Associate Fellow: 2022-2022
- I am so grateful for my time here at KICP and it’s great to be back!
The Cosmic Ray Mystery

Cosmic Ray Flux

Energy [eV]

Where are the highest energy cosmic rays coming from?

Cosmic ray challenges:

- They don’t point back to their sources due to magnetic fields
- They may interact as they propagate through the universe
What about neutrinos?

Produced from ultra-high energy sources via cosmic ray interactions (p-p, p-γ)

Produced by interactions between ultra-high energy cosmic rays and cosmic microwave background photons (e.g. GZK Mechanism)

“Ultra-high energy” = 10^{15} eV and above
What about neutrinos?

Produced from ultra-high energy sources via cosmic ray interactions (p-p, p-γ)

Neutrino Pros:
- Point directly back at their sources
- Capable of traveling extreme distances without interacting

“Ultra-high energy” = 10^{15} eV and above

Produced by interactions between ultra-high energy cosmic rays and cosmic microwave background photons (e.g. GZK Mechanism)
What about neutrinos?

Neutrino Pros:
- Point directly back at their sources
- Capable of traveling extreme distances without interacting

Neutrino Cons:
- Capable of traveling straight through the Earth without interacting

“Ultra-high energy” = 10^{15} eV and above

Produced from ultra-high energy sources via cosmic ray interactions (p-p, p-γ)

Produced by interactions between ultra-high energy cosmic rays and cosmic microwave background photons (e.g. GZK Mechanism)
Neutrinos are expected at higher energies.
We need new strategies to look at higher energies.
We need new strategies to look at higher energies

Solutions:
1. Wait decades
2. Build many IceCubes, or
3. Try something else
Instead of Optical, try Radio

Askaryan Radiation:

- Shower develops negative charge excess
- Coherent radiation for wavelengths > shower width
- Best in dense, dielectric, radio-clear material
- Ice attenuation: **meters** in optical, **kilometers** in radio

Measured in ice, salt, Sand, Atmosphere

ANITA Collaboration, PRL 2006
Expected Neutrino Signatures
Expected Neutrino Signatures

Neutrino Event Signatures:
- Impulsive
- MHz-GHz range
- Likely originates from deep ice

![Graphs showing reconstruction channels and phased array](image)
Lots of Radio-Based Experiments

Ice-based radio experiments require less instrumented volume than optical experiments

* I collaborate on these
Where were we 20 years ago?

RICE, GLUE, FORTE had best neutrino limits
The RNO-G Collaboration (2024)
First step: pick a site

• Need somewhere with a lot of radio-clear ice

• South Pole can be logistically hard. Are there other options?

• First tests of radio response of ice in Greenland near Summit Station helped inform future designs- a team with lots of KICP ties!
Second step: prototyping

- Typical triggers had focused on power: looking for coincident power within a given time window on multiple antennas

- Instead, try a trigger with power + direction and a compact antenna design

- Define directions ahead of time and try all directions simultaneously

- Plane wave signals will add coherently -> improved trigger efficiency for smaller signals
Second step: prototyping

Abby testing the first iteration of a phased array trigger - Summit Station, Greenland

Me, at the South Pole testing the South Pole iteration of the phased array trigger
Second step: prototyping

- Farther left = More neutrinos
- Farther up = More neutrinos
Second step: prototyping

- Farther left = More neutrinos
- Farther up = More neutrinos
Second step: prototyping

ARA: 8 station-years
ARIANNA: 31 station-years
ARA PA: 7 months!

ARA: 8 station-years
ARIANNA: 31 station-years
ARA PA: 7 months!

Flux $E^2\Phi$ [GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$]

Neutrino Energy [eV]

IceCube

ARA
ARIANNA
ANITA I-IV
Auger

- Cosmogenic: UHECR constraints, van Vliet et al
- Cosmogenic: UHECR + pure proton, Muzio et al
- Astrophysical: MMA constraints, clusters, TDEs
Second step: prototyping

ARA: 8 station-years
ARIANNA: 31 station-years
ARA PA: 7 months!

Scaled up prototype:
35 stations x 5 years

ARA: 8 station-years
ARIANNA: 31 station-years
ARA PA: 7 months!

south Pole Prototype

Flux $E^2\Phi$ [GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$]

ARA: 8 station-years
ARIANNA: 31 station-years
ARA PA: 7 months!

IceCube

Cosmogenic: UHECR constraints, van Vliet et al
Cosmogenic: UHECR + pure proton, Muzio et al
Astrophysical: MMA constraints, clusters, TDEs

Allison et. al. (PRD 2022)
Third Step: try building at scale

- Need lots of individual phased arrays to accumulate enough livetime to see the very faint neutrino signal
- Enter the Radio Neutrino Observatory in Greenland (RNO-G): fully funded (!) to reach 35(+) stations
- Three stations deployed in 2021 and four deployed in 2022: seven total!
- This summer, holes for seven more stations will be drilled
A single RNO-G Station

Bird's Eye View

Surface Channels

Recon Antennas

Phased Array

Downhole View

DAQ

20 m

100 m
A single RNO-G Station

Surface Channels

Phased Array

Recon Antennas

Downhole View

100 m

Different polarizations allow the signal to be reconstructed

Hpol

Calibration Pulser

Vpol
A single RNO-G Station

Recon Antennas

Phased Array

Downhole View

LPDAs in Trench

6.0m (from center)

7.5m

9.0m

Surface antennas used as a cosmic ray veto and additional reconstruction tool
Antennas in Action!

VPol + LPDA

HPol

Antenna in deployment hole
Challenge 1: Drilling

- BigRAID drill: electromechanical, designed specifically for RNO-G

- Drilling holes to 100 m takes time; logistically, it’s very hard to drill fast.

- We are getting better at this! Each year, we are improving (and so is the drill)
Challenge 2: Snow accumulation

RNO-G Station from above

RNO-G Station from above - 2 years after deployment
Challenge 3: Daylight

- RNO-G is solar powered-great for building stations many kms from Summit Station
- Downside: can only take data for ~6 months per year
- Wind power is a possible future option
Challenge 4: Human-made noise

Daily Weather Balloon

Commercial Airplanes

- Station 23
- Station 24
- Station 21
- Station 11
- Station 13

Full Flight Path

Time From First Signal [s]
Challenge 5: Calibration

Need < 5 cm error on antenna locations - and a good ice model!
Building towards the future

- RNO-G is currently being constructed and is carefully building tools needed to conduct a neutrino search.

- Currently using cosmic rays to determine instrument performance.

- Lots of advancements have been needed to make this happen, on every front: drilling, antenna design, hardware/firmware, and calibration.

- 35 stations + 5 years of data will make RNO-G sensitive to most optimistic cosmogenic flux models.