The Radio Neutrino Observatory in Greenland (RNO-G): Prospects and status

ALL STREET

Kaeli Hughes Assistant Professor @ Ohio State Former KICP Graduate student and KICP Associate Fellow

KICP 20th Anniversary June 7, 2024

Summit Station, Greenland

My Time at KICP

- Graduate Student: 2017-2022
- KICP Associate Fellow: 2022-2022
- I am so grateful for my time here at KICP and it's great to be back!

The Cosmic Ray Mystery

Where are the highest energy cosmic rays coming from?

Cosmic ray challenges:

- They don't point back to their sources due to magnetic fields
- They may interact as they propagate through the universe

З

What about neutrinos?

Produced from ultra-high energy sources via cosmic ray interactions $(p-p,p-\gamma)$

"Ultra-high energy" = 10¹⁵ eV and above

Produced by interactions between ultrahigh energy cosmic rays and cosmic microwave background photons (e.g. GZK Mechanism)

What about neutrinos?

Produced from ultra-high energy sources via cosmic ray interactions $(p-p,p-\gamma)$

Neutrino Pros: Point directly back at their sources

 Capable of traveling extreme distances without interacting

"Ultra-high energy" = 10¹⁵ eV and above

Produced by interactions between ultrahigh energy cosmic rays and cosmic microwave background photons (e.g. GZK Mechanism)

What about neutrinos?

Produced from ultra-high energy sources via cosmic ray interactions $(p-p,p-\gamma)$

Neutrino Pros: Point directly back at their sources

 Capable of traveling extreme distances without interacting

Neutrino Cons:

Capable of traveling straight through the Earth without interacting

"Ultra-high energy" = 10¹⁵ eV and above

Produced by interactions between ultrahigh energy cosmic rays and cosmic microwave background photons (e.g. GZK Mechanism)

Science, Vol 342, Issue 6161 (2013) Neutrinos are expected at higher energies

Expected Neutrino Signatures

8

Expected Neutrino Signatures

Neutrino Event Signatures:

1000 •Impulsive U [micro Volt] •MHz-GHz range •Likely originates from deep ice -1000forward view side view E-field polarization E-field polarization 1000 Volt nicro

8

Lots of Radio-Based Experiments

Where were we 20 years ago?

RICE, GLUE, FORTE had best neutrino limits

The RNO-G Collaboration (2024)

First step: pick a site

- Need somewhere with a lot of radio-clear ice
- South Pole can be logistically hard. Are there other options?
- First tests of radio response of ice in Greenland near Summit Station helped inform future designs- a team with lots of KICP ties!

J. Avva, J. M. Kovac, C. Miki, D. Saltzberg, A. G. Vieregg (2015)

Second step: prototyping Phased Array Triggering: • Typical triggers had focused on power: Power + Direction

- Typical triggers had focused on power: looking for coincident power within a given time window on multiple antennas
- Instead, try a trigger with power + direction and a compact antenna design
- Define directions ahead of time and try all directions simultaneously
- Plane wave signals will add coherently -> improved trigger efficiency for smaller signals

Second step: prototyping

Abby testing the first iteration of a phased array trigger-Summit Station, Greenland

Me, at the South Pole testing the South Pole 14 iteration of the phased array trigger

Second step: prototyping

Second step: prototyping

Allison et. al. (PRD 2022)

Allison et. al. (PRD 2022)

Third Step: try building at scale

- Need lots of individual phased arrays to accumulate enough livetime to see the very faint neutrino signal
- Enter the Radio Neutrino Observatory in Greenland (RNO-G): fully funded (!) to reach 35(+) stations
- Three stations deployed in 2021 and four deployed in 2022: seven total!
- This summer, holes for seven more stations will be drilled

A single RNO-G Station

Surface Channels

Bird's Eye View

A single RNO-G Station

Surface Channels

Different polarizations allow the signal to be reconstructed

A single RNO-G Station

Antennas in Action!

Challenge 1: Drilling

- BigRAID drill: electromechanical, designed specifically for RNO-G
- Drilling holes to 100 m takes time; logistically, it's very hard to drill fast.
- We are getting better at this! Each year, we are improving (and so is the drill)

100

hole depth [m]

Challenge 2: Snow accumulation

RNO-G Station from above- 2 years after deployment

Challenge 3: Daylight

- RNO-G is solar poweredgreat for building stations many kms from Summit Station
- Downside: can only take data for ~6 months per year
- Wind power is a possible future option

Challenge 4: Human-made noise

Daily Weather Balloon

Commercial Airplanes

Challenge 5: Calibration Need < 5 cm error on antenna locations- and a good ice model!

Correlation

26

Building towards the future

- RNO-G is currently being constructed and is carefully building tools needed to conduct a neutrino search
- Currently using cosmic rays to determine instrument performance
- Lots of advancements have been needed to make this happen, on every front: drilling, antenna design, hardware/firmware, and calibration
- 35 stations + 5 years of data will make RNO-G sensitive to most optimistic cosmogenic flux models

