Advancing Polarization in the US

CMB Advancing Polarization in the US

Advancing Polarization in the US ...over 20+ years with KICP

John Kovac, KICP Brood -1 / 0 Chicago →Caltech →Harvard June 2024 — KICP 20th Anniversary!

1994: getting to Chicago the hard way

1994: getting to Chicago the hard way

1995-1999: learning from John Carlstrom ... as DASI takes shape

~2001: South Pole established as leading platform for CMB discovery

Matthew The New York Eimes

Listen Closely: Scientists Hear the Tiny Hum From Tiny Hum They Say Ignited the Big Bang Come Big Bang

> Power Spectrum indicating Dark Matter in early universe, 2001

Pattern in the cosmos

Discovery of CMB Polarization, 2002

Sep 2002 DASI detection of E-mode Polariation CfCP / Cosmo2002 @ Adler

(Scott: 6 co-authors, 5 sigma...not the other way around)

"Acoustic" standing waves

- Photon-baryon fluid oscillates, photon pressure gives restoring force
- Seeded by primordial fluctuations density (scalar)
- Linear regime: Fourier modes evolve independently
- Pattern is frozen at last scattering $(z \sim 1100, t \sim 380,000 \text{ yrs.})$

E-mode Polarization (curl free)

generate only E-Polarization

B-mode Polarization (curl component)

Not generated by density oscillations (only primordial source: inflationary gravity waves)

DASI Constraint on Scalar E-mode Polarization

"The greatest pleasure a scientist can experience is to encounter an unexpected discovery." — Jim Cronin (quoted by Toshihiro on Thursday)

onwards to Cosmology's greatest wild goose chase

The Search for Inflationary B-Modes

Andrew Lange Caltech Marvin L. Goldberger Professor of Physics 1957 - 2010

The Path to CMBPol - Upcoming Measurements of CMB Polarization

July 1 - 3, 2009 🔸 Chicago, Illinois

CMB Polarization Workshop

HOME	OVERVIEW	PROGRAM	PRESENTATIONS	LOGISTICS	CONTACT US

Antenna-coupled transition-edge superconducting (TES) bolometer arrays.

CMB Polarization Workshop, 2009

We are holding a workshop on CMB polarization experiment in Chicago on July 1-3. There is currently great scientific excitement surrounding the push to detect gravitational wave induced B-mode polarization of the Cosmic Microwave Background. The purpose of this meeting is to review and discuss the fast moving ground based and sub-orbital experimental program, and to get an update on the evolving plans for a next generation satellite mission.

RELATED WORKSHOPS >> CMBPol Theory and Foregrounds, 2008 CMBPol Technology, 2008 CMBPol Systematic, 2008

Chteago July 2009

The Path to CMBPol - Upcoming Measurements of CMB Polarization

July 1 - 3, 2009 🔸 Chicago, Illinois

CMB Polarization Workshop

НОМЕ	OVERVIEW	PROGRAM	PRESENTATIONS	LOGISTICS	CONTACT US	
		7-0:	CMB Polariza	CMB Polarization Workshop, 2009		

We are holding a workshop on CMB polarization experiment in Chicago on July 1-3. There is currently great scientific excitement surrounding the push to detect gravitational wave induced B-mode polarization of the Cosmic Microwave Background. The purpose of this meeting is to review and discuss the fast moving ground based and sub-orbital experimental program, and to get an update on the evolving plans for a next generation satellite mission.

Ground-based experiments at Workshop: Pole: SPTpol, BICEP/Keck Chile: QUIET, ABS, ACTpol, Polarbear (CLOVER, QUBIC, QUIJOTE...) ...+ balloons, satellites...

RELATED WORKSHOPS >> CMBPol Theory and Foregrounds, 2008 CMBPol Technology, 2008 CMBPol Systematic, 2008

Antenna-coupled tra

bolometer arrays.

From BICEP1 to BICEP2 & KECK

BICEP/Keck: 0.3m

SPT: 10m

BICEP1 initial results

CMB result: Chiang et al. 0906.1181 Characterization: Takahashi et al. 0906.4069

• This is doable.

- Instrument worked as designed
- No exotic polarization modulators just careful optical design and azimuth scanning.
- Systematics controllable down to at least r = 0.01
- First high S/N measurement of CMB (E) polarization at I = 100

• This is hard.

Initial result from first 2 seasons after massive analysis effort:
 r = 0.03, +0.31, -0.27, or upper limit r < 0.73 at 95% confidence

Why a small aperture?

- Efficient (\$) to integrate / test / deploy
- Stability of (4K) telescope & beams
- Aperture filling calibrators
- Aperture filling waveplate (BICEP2)
- Superior sidelobe suppression

BICEP / Keck : map depth & sensitivity to r

BICEP / Keck : map depth & sensitivity to r

WTF?

(where's the four?)

Where did the factor of 4 go?

• NOT:

- Time on target. > 3000 hours / season on Southern Hole, better than projected
- Foreground removal
- 1/f noise. Very small in pair difference across science band
- E/B separation
- Chance fluctuation... sims show 95% limit could have been r < 0.5 or r < 1.3

Where did the factor of 4 go?

• NOT:

- Time on target. > 3000 hours / season on Southern Hole, better than projected
- Foreground removal
- 1/f noise. Very small in pair difference across science band
- E/B separation
- Chance fluctuation

Small factors:

_	- Final array-averaged NEQs in science band: 19%, 14% high			
_	 Channels cut for unusual transfer functions 			
_	Channels lost for other reasons	1.2		
_	Fraction of scanning time used: 60%	1.6		
_	Exclusion of partial scans	1.05		
_	 Mode-loss due to aggressive filtering scheme 			
_	Sub-optimal B spectrum estimation?	1.2 ?		
		total:		

So what factor can realistically be gained back with more work?

Guess: 1.5 - 3

July 2009 KICP CMPpol workshop

4.9

BICEP / Keck : map depth & sensitivity to r

Keck Array status:

Cryostat and insert integration underway this summer

Design: Chris Sheehy

BICEP / Keck : map depth & sensitivity to r

BICEP/Keck Collaboration ~60 scientists (at least half postdocs and students)

Constraints on Inflation from B-modes to Date

Challenges

- Astrophysical Foregrounds
 - Polarized thermal dust emission!
 - fairly well-characterized by now
 - As maps get deeper: galactic synchrotron, extragalactic sources will become more relevant
- Gravitational Lensing
 - Lensing of ACDM E-modes by large-scale structure mixes E/B
 - Currently the dominant contribution to BK18's $\sigma(\mathbf{r})$
 - Require high-resolution data to understand integrated lensing potential

→synergy with SPT-3G (BK+SPT="SPO")

- Instrumental Systematics
 - Residual beam mismatch, crosstalk, etc.
- Terrestrial contamination, stability
- The Earth's atmosphere, both unpolarized AND polarized

Latest r Constraint: "BK18"

(uses data up to 2018 season, released 10/2021)

 $r < 0.036 (95\% \text{ C.L.}), \qquad \sigma(r) = 0.009$

 \rightarrow The most sensitive primordial B-mode constraints to-date

- \rightarrow Sensitivity dominated by only 3 years of BICEP3 data (5 more in the can!)
- \rightarrow Lensing sample variance is now the dominant source of uncertainty

Multicomponent Likelihood Analysis

Take joint likelihood of all BK and external (WMAP+*Planck*) BB auto- and cross-spectra against lensed- Λ CDM+foregrounds+**r** model

Latest r Constraint: "BK18" (2021)

Since BK18...

- +5 seasons of BICEP3 95 GHz data (+167% vs. BK18)
- +10 *Keck* receiver-years of 220 GHz data (+56% vs. BK18)
- First BK observations at 30/40 (BA1) and 270 GHz (+∞% vs. BK18)
- New 150 GHz observations with BA2
 - + ~50% vs. BK18 from just one season with partial (5/12) focal plane!
- 220/270 GHz "BA4" receiver coming together at Stanford, to deploy this coming Austral summer season (~Nov. 2024)

BICEP Array

- New mount installed 2019-2020
- 2020: First BK observations at 30/40 GHz
- 2023: BA2 began observations at 150 GHz
- BA2 currently observing with ~5500 live detectors (2.75x BICEP3!) after 2023-2024 upgrade

BA2 (150 GHz) Deployment and Upgrade (2022-2024)

BICEP3 95 GHz 8-year map (up to 2023)

Deepest ever map of CMB polarization at 95 GHz! ~3x better noise power than BK18 BICEP3 3-year map

BA2 150 GHz 1-year map (with only 40% of a focal plane!)

BA1 40 GHz 3-year map

Advancing Polarization: BK and SPT $\sigma(r)$ through 2030

Advancing Polarization: BK and SPT $\sigma(r)$ through 2030

The South Pole is a unique Window to the CMB... like being in space!

South Pole Environment

- High Altitude (~10,000 ft) PLUS unique Polar Vortex
- Driest desert on Earth with most stable atmosphere
 - At Pole, the water vapor is 4x lower with a ~30-100x more stable atmosphere than the Chilean Atacama desert.
- Featureless, thermally-stable terrain
- Relentless Observing
 - O 24/7 year-round access to Southern Sky, including the Black Hole at the Milky Way's center for Event Horizon Telescope
- Annual Access for rapid technology deployment

Next-step pathfinders

The CfA CMB group and SAO Receiver Lab, along with the wider BICEP/Keck collaboration, are developing instruments that will serve as prototypes of several elements of the CMB-S4 SATs:

- preSAT a hybrid BICEP Array/CMB-S4 SAT receiver, incorporating CMB-S4 optics and dual band detector modules with field proven BA cryogenic hardware
 - Providing essential testing for CMB-S4 SATs this year
- **BA Replacement Tower (BART)** replacement tower and control room for BA, and prototype for CMB-S4 SAT towers, incorporating solar arrays to reduce fuel usage in summer (SAO and Harvard).
 - NSF has just asked (Feb 2024) us to lead construction of this facility at Pole, funded under a novel MREFC execution model
- **BICEP Array Mount** replacement telescope mount for BA, prototype for CMB-S4 SAT mount (UMN lead for BICEP/Keck; SAO, Harvard and NSF funding)
 - Delivered to North America last Nov (UMN), incorporated into this year's CMB-S4 test plan

Concluding thoughts...

- South Pole measurements have been uniquely successful in this wild goose chase for r.
 - Current instruments: $\sigma(r) \sim 0.005$ today, 0.002 by late decade
- Very hard news from NSF last month!
- Personally, I remain hopeful that NSF will clarify that there IS a future for US polarization at South Pole, e.g. by committing to:
 - Sustain progress within current footprint of telescopes there, while infrastructure work proceeds
 - Open a possibility to plan for new telescopes in 6-8 years
 - Allow CMB-S4 to proceed. A mostly-Chile posture for now is fine as long as we have a door open at Pole, and can react to the evidence.
- Chile is vital to future of CMB. So is Pole.
 - They are very, very different environments. We are really looking forward to deep comparisons of SO and Pole data to understand how these differences play out in fundamental degree-scale limitations.
- This is doable. This is hard.

Thank you KICP, and HAPPY BIRTHDAY!