Photometric Redshifts, DES, and DESpec
Outline

- DES photo-z calibrations: spectroscopic training set fields

- DES photo-z calibrations: spectroscopic follow-up
  - Redshift completeness
  - Sample variance
    - DESpec
  - Cross correlations
### Table 3. Relevant Existing Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ra (degrees)</th>
<th>dec (degrees)</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT</td>
<td>$-60 \leq \alpha \leq 105$</td>
<td>$-65 \leq \delta \leq -45$</td>
<td>SZ</td>
</tr>
<tr>
<td>ACT</td>
<td>$26 \leq \alpha \leq 107$</td>
<td>$-55 \leq \delta \leq -49$</td>
<td>SZ</td>
</tr>
<tr>
<td>SPT Deep</td>
<td>$-13 \leq \alpha \leq +2$</td>
<td>$-58 \leq \delta \leq -49$</td>
<td>SZ+CMB polarization+Spitzer</td>
</tr>
<tr>
<td>SPT Deep</td>
<td>$76 \leq \alpha \leq 89$</td>
<td>$-58 \leq \delta \leq -49$</td>
<td>SZ+CMB polarization</td>
</tr>
<tr>
<td>SHELA</td>
<td>$14 \leq \alpha \leq 27$</td>
<td>$-1 \leq \delta \leq +1$</td>
<td>Spitzer+HETDEX</td>
</tr>
<tr>
<td>ADFS</td>
<td>$66 \leq \alpha \leq 75$</td>
<td>$-55 \leq \delta \leq -50$</td>
<td>Akari+Herschel</td>
</tr>
<tr>
<td>WiggleZ 1hr</td>
<td>$7.5 \leq \alpha \leq 20.6$</td>
<td>$-3.7 \leq \delta \leq +5.3$</td>
<td>Spectroscopy</td>
</tr>
<tr>
<td>DEEP2 2hr</td>
<td>37.5</td>
<td>0.0</td>
<td>Spectroscopy</td>
</tr>
<tr>
<td>PRIMUS</td>
<td>various</td>
<td>various</td>
<td>Spectroscopy at $i \leq 22^{nd}$</td>
</tr>
<tr>
<td>VVDS Shallow</td>
<td>-25</td>
<td>0.0</td>
<td>Spectroscopy at $i \leq 22^{th}$</td>
</tr>
<tr>
<td>VVDS Deep</td>
<td>32.5</td>
<td>-49.0</td>
<td>Spectroscopy at $i \leq 24^{th}$</td>
</tr>
<tr>
<td>Vipers W4</td>
<td>-27</td>
<td>2</td>
<td>Spectroscopy at $i \leq 22.5$</td>
</tr>
<tr>
<td>Vipers W1</td>
<td>30</td>
<td>5</td>
<td>Spectroscopy at $i \leq 22.5$</td>
</tr>
<tr>
<td>CFHTLS W1</td>
<td>$30 \leq \alpha \leq 37.5$</td>
<td>$-11.3 \leq \delta \leq -3.5$</td>
<td>High quality imaging</td>
</tr>
<tr>
<td>CFHTLS D1</td>
<td>36.5</td>
<td>-4.5</td>
<td>High quality imaging</td>
</tr>
<tr>
<td>DEEPLens F6</td>
<td>32.5</td>
<td>-4.5</td>
<td>High quality imaging</td>
</tr>
<tr>
<td>DEEPLens F3</td>
<td>80.0</td>
<td>-49.0</td>
<td>High quality imaging</td>
</tr>
<tr>
<td>SDSS Stripe82</td>
<td>$-60 \leq \alpha \leq 60$</td>
<td>$-2 \leq \delta \leq +2$</td>
<td>High quality imaging+spectroscopy</td>
</tr>
</tbody>
</table>
Figure 2. The DES survey footprint along with other relevant South Galactic Cap surveys. The purple line outlines a modified 5-year DES footprint under consideration. The names of fields are given in the text and in Table 3. Grey and red areas are spectroscopic surveys. SDSS Stripe 82 is indicated by a grey cross-hatched region. Purple regions are deep intermediate-scale imaging surveys. Green areas are infrared surveys; note that the VHS covers the whole map at $\delta < 0$ and will go deeper in the DES footprint. Yellow areas are SZ surveys.
DES DC6 Photo-z Challenge: comparison of photo-z scatter

DC6B training set similar in size to VVDS-Deep sample
Photo-z spectroscopic follow-up: redshift completeness

- Spectroscopic training samples are not complete to DES photometric limit $i = 24$
  - Even $I_{AB} < 24$ VVDS-Deep sample suffers from incompleteness as functions of magnitude, color, and redshift
  - Proposal for 2012B Magellan/IMACS time to improve completeness of VVDS-Deep 02 hr field training set by effective tripling of integration time
  - Also investigating completeness vs. redshift using spectroscopic simulations (see Carlos Cunha talk)
Magellan/IMACS photo-z completeness pilot program (Frieman, Lin, Kessler, & Helsby)

Effectively triple original 4.5 hour integration time of VVDS class = 1, 50% secure redshifts

Demonstrate an increase in completeness of VVDS-Deep sample
300 targets on single IMACS mask

5650-9200 Å, very similar to original VVDS spectral coverage

Poor observing conditions in October 2011, have re-submitted proposal in April for 2012B
“Sample variance” issue described by Cunha et al. (2012)

- Large scale structure fluctuations cause uncertainties in training set spectroscopic redshift distributions (in a given photo-z bin): \( P(z_{spec} | z_{phot}) \)
- Important systematic error in weak lensing tomography analysis: causes bias in measured dark energy equation of state parameter \( w \) and can dominate over statistical error
- A few deep training set fields are not enough, may require substantial follow-up on 8-10m class telescopes, i.e., > 100 spectrograph fields, to mitigate
- Begin to address in AAT/AAOmega 2012B program, which plans to obtain DES supernova host and other galaxy redshifts to \( i \sim 23 \), spread over 30 deg\(^2\) area of DES supernova fields
- Plan future proposal for large program on VLT/VIMOS and other telescopes
  - Detailed strategy to be worked out, with simulations, plus synergy with completeness follow-up and cross correlations
Bias in $w$ due to photo-z's

Figure 5. Bias/error ratio in the dark energy equation of state, $\delta w/\sigma(w)$, for a fixed contamination of 0.01 as a function of position in $z_p - z_s$ space.

Figure 6. Spectroscopic redshift distribution of the whole survey (i.e. the photometric sample), $N(z_s)^{\text{phot}}$, in black, and of Patch 37, $N(z_s)^{\text{Patch 37}}$, shown in blue.

From Cunha et al. (2012)
Bias in $w$ due to photo-z’s (cont’d)

From Cunha et al. (2012)

Difference in $P(z_s|z_p)$ between training and full samples

Resulting bias-to-error ratio in $w$

Figure 7. Biases in Patch 37. The top-row panels show the difference of $P(z_s|z_p)$ for the photometric and calibration samples for the polynomial (top left panel) and template (top right panel) method. The bottom-row panels show the corresponding contribution to bias/error ratio in the dark energy equation of state $w$ due to photometric redshift errors in each $z_s, z_p$ bin. The fractional biases in $w$ shown in the bottom row panels are equal to the product of the photometric redshift errors (shown in the top row panels) and the sensitivity to a fixed photometric redshift (shown in Fig. 5).
### Table 2. Mean fractional bias in \( w \) (i.e. mean of \( \delta w/\sigma(w) \)) and \( \sigma_{68} \) (i.e. width of the \( |\delta w|/\sigma(w) \) distribution) for the different techniques, assuming patches of area 6, 1, 1/4 deg\(^2\) for training and calibration or a random subsample with the same number of galaxies. The \( \Delta \chi^2_{\text{med}} \) column indicates the median value (among all patches) of \( \Delta \chi^2_{\text{tot}} \) of the fit over all cosmological parameters; see Eq. (20).

<table>
<thead>
<tr>
<th>Technique</th>
<th>6 \text{ deg}^2</th>
<th>LSS</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \delta w/\sigma(w) )</td>
<td>( \sigma_{68} )</td>
<td>( \Delta \chi^2_{\text{med}} )</td>
<td>( \delta w/\sigma(w) )</td>
</tr>
<tr>
<td>Template</td>
<td>0.04</td>
<td>2.56</td>
<td>3.14</td>
</tr>
<tr>
<td>Polynomial</td>
<td>-0.07</td>
<td>1.53</td>
<td>2.04</td>
</tr>
<tr>
<td>( p(z)_w )</td>
<td>0.05</td>
<td>2.33</td>
<td>2.56</td>
</tr>
<tr>
<td>1 \text{ deg}^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Template</td>
<td>-0.04</td>
<td>3.75</td>
<td>7.36</td>
</tr>
<tr>
<td>Polynomial</td>
<td>-0.19</td>
<td>2.96</td>
<td>4.74</td>
</tr>
<tr>
<td>( p(z)_w )</td>
<td>-0.01</td>
<td>3.99</td>
<td>9.05</td>
</tr>
<tr>
<td>1/4 \text{ deg}^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Template</td>
<td>0.03</td>
<td>4.61</td>
<td>16.4</td>
</tr>
<tr>
<td>Polynomial</td>
<td>-0.11</td>
<td>3.99</td>
<td>10.3</td>
</tr>
<tr>
<td>( p(z)_w )</td>
<td>0.07</td>
<td>5.88</td>
<td>32.3</td>
</tr>
</tbody>
</table>

From Cunha et al. (2012)

Sample variance (LSS) causes bias-to-error ratio in \( w \) to be > 1 for typical small training set patches
Sample variance requirements from Cunha et al. (2012)

Expensive, e.g., 75 nights on VLT at VVDS completeness

\[ \sigma_{95}(|\text{bias}|) = 1.0 \]
Photo-z bias error for DESpec simulation

Galaxies and LSS from DES v3.04 mocks (Wechsler, Busha, et al.)

$p(z)$ photo-z’s (Cunha et al. 2009)

4000 fibers per DESpec field
From Cunha et al. (2012)

**Table 5.** Mean and \( \sigma_{68} \) scatter of the fractional bias in \( w \) for the different techniques, assuming patches of area 6, 1, 1/4 deg\(^2\) for training and calibration or a random subsample with the same number of galaxies. The \( \Delta \chi^2_{\text{med}} \) column indicates the median \( \Delta \chi^2_{\text{tot}} \) of the fit over all cosmological parameters. Results in this Table assume the true redshift distribution of the photometric sample was known, allowing us to use \( P(z_p|z_s) \) instead of \( P(z_s|z_p) \) as described in the text. The \( R(\sigma_{68}) \) shows the ratio of the \( \sigma_{68} \) used in this Table, to the corresponding value in Table 2.

Using Bayes’ Theorem

\[
P(z_s^i|z_p^j) = P(z_p^j|z_s^i) \frac{N_s^i}{N_p^j}
\]

Reduced sensitivity of \( P(z_p|z_s) \) to sample variance may enable relaxed training set follow-up requirements
Photo-z derivation of $N(z)$

Basic problem: How to get individual p.d.f. $P(z_s | z_p) (= L'(z))$ from likelihood function $L(z)$?

- Use $z_{ML}$ as in bin construction?
- Use $N(z) = \Sigma L(z)$?
- Use $N(z) = \Sigma L'(z)$ with modified $L'(z)$?

$\Sigma L'(z)$ based on total of 1000 spec-z in a single field
$\Sigma L'(z)$ based on total of 1000 spec-z from all 24 fields

Note: Only 1000 calibrating $z_{spec}$ and Cosmic Variance not a problem

Slide from S. Lilly; see Bordoloi et al. (2010)
Angular cross correlations (e.g., Matthews & Newman 2010) between spectroscopic and photometric galaxy samples

- Get redshift distributions of galaxies fainter than easily accessible via spectroscopy, in particular to DES limit i = 24
- Advantage that bright and even incomplete spectroscopic training sets are useful
- Investigating performance of this technique (Helsby et al., in prep.) using DES mock galaxy catalogs to optimize follow-up scenarios (see Jen Helsby talk)
- Combine redshift distributions from cross correlations to help with sample variance issue
- Will examine both cross correlations and sample variance in submitted 2012B DES spectroscopic follow-up proposals
  - AAT/AAOmega proposal: \( i \sim 23 \), over 30 deg\(^2\) area of DES supernova fields
  - Magellan/IMACS proposal: \( i < 22.5 \), with 6 masks spread over 9 deg\(^2\) DES CDFS supernova field
• DES will use multiple, existing spectroscopic surveys to provide training sets to calibrate photo-z’s
  • VVDS-Deep provides photo-z calibrations early on for DES
• DES photo-z spectroscopic follow-up plans focused on issues of
  • Redshift completeness
  • Sample variance
  • Cross correlations
• Have submitted small-scale 2012B proposals to Magellan and AAT
• Detailed strategy for larger-scale proposals are being developed and optimized in context of photo-z, SN, and other science
• DESpec can provide training sets over large areas of sky and help mitigate sample variance/large scale structure issues for DES photo-z calibrations