VPH gratings and low-dispersion spectrograph design

Will Saunders, AAO

31st May 2012
VPH gratings

• Thin layer of DCG (Dichromated gelatin) with sinusoidal refractive index modulation.

• Efficient, tuneable, cheap, multiple vendors, large beams ok, low scattered light.

• Now universal in low-dispersion spectrograph design.

• But three primary degrees of freedom (line spacing, thickness, index variation), all with strong effects on efficiency envelope.
Fixed-format spectrograph design

- Fiber diameter, fiber exit speed, detector spectral pixels are all fixed parameters.
- Hard requirements are wavelength coverage and resolution.
- Soft requirements are efficiency envelope and cost.
- Collimator speed defined by fiber exit speed.
- Camera speed then determined by required resolution.
- Beam-size is not fixed. Once beam-size is selected, grating angle and line density follow.
- DCG thickness and index modulation can then be tuned for best efficiency, then iterate and think again about 'fixed' and 'hard'.
- Smaller beam \Rightarrow larger grating angles and grating line density.
- Need to explicitly include the grating to find optimal design.
- Up to 90% efficient at peak.
- Lower at higher dispersions because s and p polarisations cannot be simultaneously optimised.
- Narrower bandwidth than reflection gratings.
- Can shift efficiency peak to red or blue by tweaking input angle, but overall efficiency drops when used away from 'superblaze'.
- To zeroth order, angular bandwidth is fixed. Would favour larger beamwidths.
Gratings are defined by DCG thickness d, line spacing Λ, refractive index n, and index variation Δn.

Usage defined by input grating angle α and wavelength λ.

- $\lambda = 2\Lambda \sin \alpha$ (grating equation), $\Lambda \approx \lambda/2\alpha$
- $d \Delta n \sim \lambda/2$ for maximum peak efficiency
- Efficiency bandwidth maximised by large Δn and small d.
- But losses to 0^th order when $\alpha d \leq \Lambda$ or $d \leq \lambda/2\alpha^2$

\Rightarrow at low dispersion, need larger $d \Rightarrow$ lower Δn

\Rightarrow Angular bandwidth is less at low dispersion
At higher dispersions, want highest possible Δn, and smallest d.

Angular bandwidth $\Delta \alpha \sim \lambda/2d$, \sim constant with dispersion

But peak efficiency dropping (s vs p issues). Sweet spot at grating angles $\sim 20^\circ$.

Below this, spectral bandwidth is nearly constant.

So there is a minimum beam size, giving grating angle $\sim 20^\circ$. But above that, VPH efficiency is constant.
General considerations:

- Assume 550-950nm, 4000 spectral pixels, 100µm fibers, f/2.75 collimator, 2.5pix FWHM on detector (=0.25nm).
- Camera speed is then f/1.24! Very fast for transmissive.
- 20° grating angle corresponds to minimum beam-size ~125mm.
- Could shrink fiber size to 90µm and/or increase pixels/FWHM, to get ~f/1.5 camera (for transmissive design). Then minimum beam-size becomes even smaller, ~100mm.
Reflective vs transmissive

- **Reflective** (Schmidt-style) allows faster cameras, fewer optical components, superb imaging. Camera speeds up to ~f/1.2
- But detector is in beam \Rightarrow obstruction losses
- Camera-as-dewar adds additional complexity
- Obstruction losses \Rightarrow large beam (250mm+) preferred
- Schmidt correctors now cheaper and less risky with MRF technology

- **Transmissive** allows much smaller beam
- Difficult in blue but ok for 550nm-950nm
- Imaging not so good? Matters for PSF constancy.
- Max camera speed only ~f/1.5?
- Alignment difficulties at fast speeds?
Strawman transmissive design:

- JHU WFMOS design (SDSS pushed to 4K x 4K detectors) is lovely
- 159mm beam, 2 x f/1.5 cameras, $\lambda = 390$-1000 nm, R~ 3000
- Compact and affordable @ $1M each.
- Very efficient (70% peak)
- ~600 fibres/spectrograph for MOS

2230 mm x 1000 mm x 570 mm
318kg
$1M
Schmidt/Schmidt design, 250mm beam, F/1.3 camera.

Fixed format, so can put prisms between VPH and correctors, to reduce air-glass surfaces.

Lollipop dewar with field-flattener as dewar window

Optics are good (rms radius < 10μm).

Total hardware cost ~$300K (optics, dewar, detector, controller)

Two-armed version possible, twice the hardware costs.
Reflective design B

Maksutov design is much more compact. Double pass idea is new??? Detector is now outside camera.

All surfaces except field flattener are spherical.

Can go to F/1.2 camera (with <10\(\mu\)m rms spots)

Obstruction is at pupil, so very good shadowing between top-end obstruction on telescope and detector package \(\Rightarrow\) more efficient, >70% peak, competitive with transmissive designs