Redshift Calibration with CMB+LSS Cross-Correlations

Eric Baxter The University of Pennsylvania

Redshift Estimation

Accurate galaxy redshifts are needed for future optical surveys like LSST

 For LSST, mean z of galaxy bins must be known to ~0.002 (Zhan, Knox 2006, Newman et al. 2013)

Standard photo-z methods

Templates

- Match observed galaxy colors to library of redshifted template spectra
- Problem: templates don't necessarily match real galaxies

Machine learning

- Obtain spectroscopic z for set of "training" galaxies, then use machine learning techniques to predict z for photometric galaxies
- Problem: it is difficult to obtain training set at high-z

Fundamental problem: degeneracies in color-redshift space

"Correlation methods"

- Correlate photometric galaxy sample with spectroscopic galaxy sample (Newman 2008, McQuinn & White 2010)
- Correlate galaxy sample with CMB lensing maps

Photometric Redshift Calibration with CMBxLSS 2pt functions

Three observables from optical imaging survey + CMB

Y : galaxy shears	g : galaxy positions	κ : CMB lensing

Two Point Functions:

CMB x LSS	LSS-only	CMB-only
дхк,үхк	γxγ,gxg,gxγ	КХК

CMB x LSS 2pt functions depend on galaxy redshifts distributions

- g x k depends on redshifts of lens galaxies
- γ x k depends on redshifts of source galaxies

Broad CMB lensing weight means g x κ and γ x κ aren't very sensitive to small shifts in N(z)

However: including CMBxLSS 2pt functions breaks degeneracies between N(z) and e.g. galaxy bias \rightarrow improved constraints on N(z)

An Example from DES + SPT

Data:

- DES Science Verification (roughly 150 sq. deg.)
- SPT-SZ

N(z) bias parameterization:

- Use standard photo-z methods to estimate N(z)
- Use cross-correlation to constrain bias parameter Δz = shift in N(z)
- Only considering Δz for lenses here

Baxter et al. 2016

Projection: source galaxy redshifts

Calibrating photo-z of source galaxies is exciting because it is hard to obtain spectroscopic training sets for high-z objects

- Roughly S4 noise level for CMB lensing
- LSST-like source density
- Assumes relatively low density lens galaxies with very accurate photo-z
- Single lens and source bin
- Planck priors on cosmological parameters

Projection: lens galaxy redshifts

CMB lensing can also be used to constrain redshifts of "lens" galaxy sample

- Assume high density lens galaxies
- Marginalize over source galaxy photo-z bias with σ =0.01 prior
- Lens galaxy N(z) bias not degenerate with m
 - Consistent with findings of Schaan et al. 2016

Summary

Future optical surveys need very accurate redshifts

 CMB 2pt functions provide additional information in joint analyses that can be used to constrain N(z)