Welcome! (again)

Stage 4 CMB experiment: CMB-S4

- A next generation ground-based program to pursue <u>inflation</u>, <u>neutrino properties</u>, <u>dark radiation</u>, <u>dark energy</u> and new discoveries.
- Greater than tenfold increase in sensitivity of the combined Stage 3 experiments (>100x current Stage 2) to cross <u>critical science</u> <u>thresholds.</u>
- O(500,000) detectors spanning 30 300 GHz using multiple telescopes and sites to map most of the sky, as well as deep targeted fields.
- Broad participation of the CMB community, including the existing CMB experiments (e.g., ACT, BICEP/Keck, CLASS, POLARBEAR/Simons Array & SPT), National Labs and the High Energy Physics community. <u>International partnerships</u> <u>expected and desired.</u>

continuing series of community workshops to advance CMB-S4

U. Minnesota Jan 16, 2015

U. Michigan Sep 21-22, 2015

LBNL, Berkeley March 7-9, 2016

U. Chicago Sep 19-20, 2016

Working on conceptual design and iterate with science goals

Atacama CMB (stage 2 & 3)

Stage-2 ~ 1000 detectors Stage-3 ~10,000 detectors

South Pole CMB (stage 2 & 3)

Telescopes at Chile and South Pole (established and proven CMB sites)

possibly add new northern site, e.g., Tibet, Greenland

Figure from Clem Pryke

Enhance Future Surveys science by overlapping coverage

CMB-S4 Science Book

download Science Book and sign up as "contributor" and/or "endorser" at <u>http://cmb-s4.org</u>

Deadline for posting on arXiv. Monday September 26th CMB-S4 Science Book First Edition

> CMB-S4 Collaboration August 1, 2016

This advanced copy is being provided prior to posting with the list of contributors on the public archive.

Eight chapters (220 pages):

1) Exhortations

2) Inflation

3) Neutrinos

4) Light Relics

5) Dark Matter

6) Dark Energy

7) CMB lensing

8) Data Analysis, Simulations & Forecasting

CMB-S4 Instrument White Papers

Detectors, multiplexing, readout - survey of current technologies
and areas of focus for CMB-S4

September 16, 2016

4 white paper drafts (189 pages) Available at <u>http://cmb-s4.org</u>

CMB-S4: Detector Radio-Frequency Design

September 17, 2016

CMB-S4: Broadband Optics

September 15, 2016

CMB S-4: Telescope Design Considerations

September 15, 2016

T. Essinger-Hileman, N. Halverson, S. Hanany, A. Kusaka, M. D. Niemack, S. Padin, S. Parshlev, C. Pryke, A. Suzuki, E. Switzer, K. Thompson, CMB-S4

CMB-S4 Science Book "aspirational goals"

Figure 3. Schematic timeline showing the expected increase in sensitivity (μK^2) and the corresponding improvement for a few of the key cosmological parameters for Stage-3, along with the threshold-crossing aspirational goals targeted for CMB-S4.

CMB-S4 Science Book

A detection of primordial B modes with CMB-S4 would provide evidence that the theory of quantum gravity must accommodate a Planckian field range for the inflaton. Conversely a non-detection of B modes with CMB-S4 will mean that a large field range is not required.

N_{eff} constraints and light thermal relics

Green, Meyers in CMB-S4 Science Book (<u>http://CMB-S4.org</u>) also see Baumann, Green, Wallisch "A New Target for Cosmic Axion Searches" arXiv:1604.08614

CMB-S4 projections for N_{eff}

 $\sigma(N_{eff})$ target very challenging

CMB lensing - great progress, but a long, long way to go

$T(\hat{n}) \to T(\hat{n} + \nabla \phi(\hat{n}))$ $\phi(\hat{n}) = -2 \int_0^{\chi_*} d\chi \frac{f_K(\chi_* - \chi)}{f_K(\chi_*) f_K(\chi)} \Psi(\chi \hat{n}; \eta_0 - \chi)$

graphic from ESA Website

CMB lensing

Planck lensing potential reconstruction (projected mass map).

Planck XV (2015)

CMB lensing

Planck lensing potential reconstruction (projected mass map).

Planck XV (2015)

CMB lensing

Planck lensing potential reconstruction (projected mass map).

Planck XV (2015)

CMB-S4 Science Book

CMB lensing and optical surveys

2

0

 $10^3 w^{\kappa g} (\vartheta), \text{ SPT}$

3

E.g., Galaxy and CMB-lensing

cross-correlation

"the most exiting topics on observational cosmology"

An obvious overlap area!

Giannantonio et al., 2016, beginning of CMB lensing tomography using 3% of DES survey

Angular range of CMB-S4

- Inflationary B modes search requires exquisite sensitivity at recombination bump (l~100) and high-l for de-lensing.
- High-*l* and large area for CMB lensing cosmic variance limited constraints on neutrino mass and N_{eff}
- Higher-*l* for dark energy, gravity tests and to probe reionization, via SZ effects

ℓ range of CMB-S4

CMB-S4 "high-l" science reach yet to be determined. An obvious overlap area!

CMB-S4 SZ cluster projections and lensing mass calibration for dark energy via growth of structure

Cluster sample and mass calibration strong functions of beam size Especially important at z > 1.

CMB-S4 will be a great leap forward for attaining unique CMB science goals.

CMB-S4 and Future Surveys should be highly complementary. Combined they should lead to improved and more robust science results, and potentially new science.