High Density Galaxy Survey

aka Billion Object Apparatus (BOA)

Kyle Dawson University of Utah

September 22, 2016

Outline

- Context
- •Sample Selection
- Instrumentation
- Survey Design
- Programmatics and Challenges

BOSS/eBOSS/DESI

- Excellent programs
 - Measure BAO near cosmic variance limit to z<1.5
 - Percent level BAO at z>1.5
 - RSD measurements possible to kmax=0.2
 - Nearly 40M spectra
- Fiber fed positioner depends on imaging for target selection
 - Convolves selection function across multiple imaging surveys
 - Sensitive to zeropoint calibration
- Galaxies at higher redshifts are faint and hard to classify
 - LRG ID-ed by absorption, need high S/N
 - ELG ID-ed by narrow emission, separate from sky residuals
- Systematic limitations of targeting/redshift completeness not yet clear

Statistical Limitations of BOSS/eBOSS/DESI

- BOSS/eBOSS >3 orders magnitude smaller sample than LSST
 - Galaxy population demographics not well-sampled
- DESI science reach still not statistically limited
 - Lack mixed bias tracers and high density sampling of large modes
 - Room to improve RSD at small scales (k>0.2)
- Statistics for future optical spectroscopic survey
 - More modes to explore
 - Can increase mix of tracer bias
 - Explore to non-linear scales at z<1.5
 - Explore to linear scales at 1.5<z<3.25
- This workshop → cosmology at small scales, support of LSST/CMB, but lacking comprehensive science case
- Consider comprehensive science case for spectroscopic clustering program dedicated to saturating information content past z=3

Mode Counting

- Assume 14k sqdeg program
- Sample modes to nP=1
- Linear regime: kmax evolves as 1/g (0.15 at z=0)
- Nonlinear regime \rightarrow increase kmax by factor of 2, 8X increase in N modes

Redshift	kmax	Modes (Millions)	N (per sqdeg)	N (nonlinear)
0.25 <z<0.75< td=""><td>0.19</td><td>1.75</td><td>500</td><td>2000</td></z<0.75<>	0.19	1.75	500	2000
0.75 <z<1.25< td=""><td>0.25</td><td>7.37</td><td>1500</td><td>6000</td></z<1.25<>	0.25	7.37	1500	6000
1.25 <z<1.75< td=""><td>0.30</td><td>17.47</td><td>3000</td><td>12000</td></z<1.75<>	0.30	17.47	3000	12000
1.75 <z<2.25< td=""><td>0.36</td><td>31.97</td><td>4000</td><td></td></z<2.25<>	0.36	31.97	4000	
2.25 <z<2.75< td=""><td>0.41</td><td>50.67</td><td>6000</td><td></td></z<2.75<>	0.41	50.67	6000	
2.75 <z<3.25< td=""><td>0.47</td><td>73.33</td><td>7000</td><td></td></z<3.25<>	0.47	73.33	7000	
3.25 <z<3.75< td=""><td>0.53</td><td>99.75</td><td>9000</td><td></td></z<3.75<>	0.53	99.75	9000	

Mode Counting

- 20k/sqdeg galaxies to z<1.5
 - 200M modes with new sample
 - Access non-linear regime
 - kmax=0.38 (z=0.5); kmax=0.6 (z=1.5)
- 20k/sqdeg galaxies at 1.5<z<3.5
 - 150M modes with new sample
 - New BAO, kmax=0.36 (z=2), kmax=0.47 a(z=3)
- 40k galaxies/sqdeg \rightarrow full power spectrum to kmax=0.35 and z<3.25

Redshift	kmax	Modes (Millions)	N (per sqdeg)	N (nonlinear)
0.25 <z<0.75< td=""><td>0.19</td><td>1.75</td><td>500</td><td>2000</td></z<0.75<>	0.19	1.75	500	2000
0.75 <z<1.25< td=""><td>0.25</td><td>7.37</td><td>1500</td><td>6000</td></z<1.25<>	0.25	7.37	1500	6000
1.25 <z<1.75< td=""><td>0.30</td><td>17.47</td><td>3000</td><td>12000</td></z<1.75<>	0.30	17.47	3000	12000
1.75 <z<2.25< td=""><td>0.36</td><td>31.97</td><td>4000</td><td></td></z<2.25<>	0.36	31.97	4000	
2.25 <z<2.75< td=""><td>0.41</td><td>50.67</td><td>6000</td><td></td></z<2.75<>	0.41	50.67	6000	
2.75 <z<3.25< td=""><td>0.47</td><td>73.33</td><td>7000</td><td></td></z<3.25<>	0.47	73.33	7000	
3.25 <z<3.75< td=""><td>0.53</td><td>99.75</td><td>9000</td><td></td></z<3.75<>	0.53	99.75	9000	

Sample selection (z<1.5)

- Galaxy science programs \rightarrow mass limited samples with 8-m telescopes
- VIMOS VLT Deep Survey (VVDS)
 - 20k per sqdeg at i<22.5
 - R=230
 - 5500<lambda<9350 \AA
- Results
 - Median(z)=0.55
 - 94% success rate (4.5hr exp)
 - 75% success rate (45min exp)
 - ~5% catastrophic failure rate
- i<22.5
 - Reduces imaging selection effects with simple selection

Magnitude Limited Sample

- VVDS results consistent with LSST science book assumptions
- Magnitude-limited sample favors z<1.5
- Tune magnitude limit to desired number density
 - 20k/sqdeg at i<22.5
 - 35k/sqdeg at i<23

• Need color selection to sample z>1.5

Sample selection (1.5<z<3.25)

- Galaxy science programs \rightarrow target star forming galaxies with 10-m telescope
- Steidel et al, LRIS on Keck I
 - 30k targets per sqdeg at r<25.5
 - R=1000
 - Redshifts from UV interstellar lines
 - 1.5 hour exposures
- Results
 - 90% success rate (good conditions, r<24.5)
 - 65-70% success rate (average)

Sample selection (1.5<z<3.25)

- UGR selection to r<25.5
 - Sensitive to u-band calibration
 - May have large fluctuations
 - 25% of all r<25.5 objects
- Observations at r<23.5
 - Very high success rates
 - Well-defined O, Si, C lines
- Reduce to r<24.5?
 - S/N increases by 2.5
 - Better for UV absorption
 - Ntargets~15k/sqdeg

Lyman-alpha Absorption Tomography at z>2

- 2500 sightlines per sq deg at r < 24.5 vs 15 per sq deg in BOSS (r < 21)
- Sightline separations of 2-3 Mpc/h → full 3D mapping down to non-linear scales
- K-G Lee et al 2014 showed that S/N = 2-3 per angstrom sufficient for tomographic reconstruction
- Ongoing CLAMATO survey over 1 sq deg on Keck-I/LRIS
 - (http://clamato.lbl.gov)
- BOA: 5000 per sq deg of UGRselected targets (inc. TS overhead) with 3hrs integrations will cover all linear modes at 2.0 < z < 3.5

Survey Design

- 35k targets per sqdeg, 14k sqdeg
 - Magnitude limited sample to z<1.5
 - UGR selection for 1.5<z<3.25
 - 500M spectra
 - 15X DESI
- 350M Fourier modes
 - 30X DESI
- 10m telescope
 - 6X DESI collecting area
- 1 hr exposures for ?90%? redshift success
 - 2.4X DESI exposure times
- Overall ~4X better [OII] sensitivity than DESI for low z sample
- 3600-13,000 \AA
 - Includes IR channel for [OII] detection to z=2.5
 - R~4000 for sky subtraction and [OII] identification

Survey Characteristics

- Conservative Assumptions
 - 1000 hours open shutter per year
 - 1 hr/exposure
 - 10 yr program
- 10,000 unique pointings
 - 2.5 degree FOV (4.9 sqdeg per field)
 - Three passes per coordinate (3hrs with repeat visits to lyman-alpha forest tomography targets)
- Assume 80% fiber efficiency
 - 13k fibers per sqdeg
 - 65k fibers for instrument
- Increase fiber density 2X to reach 1B spectra

Possible Telescope Design

- Two designs for massively multiplexed spectrographs on 10-m class telescope
 - Pasquini et al., 2016
- Fiber design
 - 2.5 degree diameter (4.9 sqdeg)
 - 1.3 meter focal plane diameter (Cass focus)
- Ring design
 - 1.5 degree diameter (1.0 sqdeg)
 - 4.6 meter focal plane diameter (Coude focus)
- Bigger spectrograph on bigger telescope:
 - Cass versus Coude
 - FOV considerations

Spectrographs

- DESI design with 4th channel
- Silicon + Germanium CCDs
- Si for two channels, 3500<lambda<8000 \AA
 - Well-known technology
- Ge for two channels, 8000<lambda<13,000 \AA
 - New CCD's being developed at Lincoln Labs/LBNL

Technical Challenges

- Details of target selection and exposure depth
 - What is optimal number density for z<1.5 and z>1.5?
 - What is the expected redshift success rate versus exposure time?
 - What are requirements for spectroscopic completeness?
 - What are maximal allowable uncertainties in the selection function?
- Fiber placement
 - How to fill focal plane with ~100,000 fibers?
- Spectrographs
 - DESI design with 4th channel possible
 - How to scale production to accommodate ~100,000 fibers?

Programmatics

- Complementarity to radio, IR, and CMB surveys
 - How do we weight independent clustering science versus programs to enhance LSST/cross-correlation science?
- Staged experiment?
 - Share telescope/instrument design with DESI-II/SSSI?
 - Instrument 10-meter telescope with ~5000-fiber spectrograph following DESI
 - Upgrade to ~100,000 fiber spectrograph after N years?

Summary

- 350M modes to explore after DESI
 - Nonlinear scales for z<1.5
 - Linear scales for 1.5<z<3.25
- Target selections tested
 - Low z: magnitude-limited to appropriate density
 - High z: UGR selection at r<24.5 but sensitive to U-band
- Instrument
 - Requires ~100,000 targets simultaneously,
 - Dedicated 10m telescope in southern hemisphere
 - Examine balance of telescope size, fiber number, etc.
 - Optical to IR coverage
- Scientific argument
 - Data argument is clear: fully sample density field to z<3.25
 - Map improved sampling onto which cosmological parameters?
 - What are acceptable levels of completeness, catastrophic failures?