Low Resolution Spectroscopy

Enrique Gaztanaga
Institute of Space Science, Barcelona
Cosmology Using Low Resolution Spectroscopy in the 2020s

February 16-17, 2016 • Chicago, IL
for $k<0.2$ we only need $r>20$ Mpc/h (or $dz>0.0035$)

Figure 1. Fractional error in the power spectrum on linear scales ($k = 0.2h\text{Mpc}^{-1}$) that quantifies inhomogeneities for various redshifts as a function of the number of objects surveyed. The dots are projections for DESI: at $z = 1$ DESI will be within a factor of 3 of the ultimate error, but at higher redshift, there is at least of factor of ten more information to be mined by future surveys. LSST will measure many more objects but will have imperfect radial information so therefore less effective information per object.
Galaxy Halos (50\%) in 10 Mpc/h thick slice
LowR Techno

see Juan Estrada’s talk

Narrow bands
Linear Variable Filters (Spherex)
Prisms
MKIDS

PAUS a pathfinder
dashed: linear theory
Lines: non-linear predictions
Points: simulation measurements
black: spectroscopic

- **red**: $dz = 0.0035(1+z)$
- **blue**: $dz = 0.007(1+z)$
- **green**: $dz = 0.03(1+z)$
Redshift Space Distortions (RSD)

\[\delta_g(k, \mu) = (b + f \mu^2) \delta(k) \]

Measure both bias and growth!

BAO:

- **radial** \(H(z) \)

 \(H(z=0.34) = 83.8 \pm 3.0 \pm 1.6 \)

- **Transverse** \(\int \frac{c dz}{H(z)} \)

 \(\theta(z=0.34) = 3.90 \pm 0.38 \)

Carnero etal 2011

FoM\(\gamma= 6 \) Crocce etal 2011
(Forecast for DES: Ross etal 2011)
RSD + Radial BAO

2012MNRAS.422.2904G
FIG. 5: Simulated pairwise kSZ measurement: We show in blue the measured signal using the true redshifts, and in green and red the results with added redshift uncertainties (averaged over multiple realisations of the redshift errors).
Lensing (CMB or Shear) x LSS: does not require spectroscopic z benefit from high density & multi tracers

Clustering-Based Redshift Estimates
larger densities (accuracy should be OK)

Galaxy Clusters
Cluster finding
mass calibration
velocity dispersion

Priors on WL shapes
kinematics WL

FIG. 4: Uncertainty in the measurement of the velocity dispersion for a galaxy cluster using a Low-Res instrument with $\sigma_z/(z + 1) = 0.003$ capable of targeting 50% of the cluster members. The results show that for velocity dispersion lower than 600 km/sec there is very little information obtained from this measurement.
Need for better z resolution (for 2D clustering)

Relative S/N of projected large-scale structure clustering correlation (applicable to intrinsic alignment and galaxy clustering) as a function of the photometric redshift error. Since intrinsic alignments and galaxy clustering are local effects, redshift uncertainty quickly degrades the signal. PAUS will achieve a factor 3 gain in S/N over e.g. COSMOS and more than a factor of 6 compared to KiDS or DES surveys.

B. Joachimi
The PAUcam@WHT

- New camera for WHT with 18 2k x 4k CCDs covering 1 deg ☰ FoV. Made in Spain

- 40 x130Å-wide filters covering 4500-8500 Å (100Å steps) in 5 movable filter trays, which also include standard ugrizY filters.

- As a survey camera, it can cover ~1 deg² per night in all filters to i~23 (with 8 ccd’s)

- Can provide low-resolution spectra ($\Delta\lambda/\lambda \sim 2\%$, or $R \sim 50$) for >30000 galaxies, 5000 stars, 1000 quasars, 10 galaxy clusters, per night.

- Expected galaxy redshift resolution $\sigma(z) \sim 0.0035 \times (1+z)$

- IA, groups, photo-z calibration, sample variance cancelation
Lab Infrastructure for DES/PAU (Barcelona)

New developments:
Carbon fiber cryostat with moving filters and temperature control
in house electronics and control software
community pipeline

3D metrology bench

CCD test station

Clean room class 10K, 1K, 100

Fully computerized machining tool (lathe)
First Light from PAUcam

~300Kg on Prime Focus

Carbon fiber cryostat
Some example results from April 2016 run

Each PAU spectra consist of up to 200 (40x5) independently calibrated flux measurements.

Here we use 12 pixel diameter apertures (best for bright galaxies).

Noise is for large aperture photometry (limiting error could be much smaller for faint galaxies).
Outlier

#337623, $z_{\text{spec}} = 0.283$, $z_{\text{BPZ}} = 0.539$, $z_{\text{SDSS}} = 0.281$, $\chi^2_{\text{spec}} = 634.5/39$, $\chi^2_{\text{BPZ}} = 15.1$
Outlier

#337623, \(z_{spec} = 0.283, z_{BPZ} = 0.283, z_{SDSS} = 0.281, \chi_{spec}^2 = 634.5/39, \chi_{BPZ}^2 = 0.5 \)
PAUcam and PAUS Summary

- PAUcam is a new instrument that is working in WHT 4.2m Telescope in La Palma and is open to the community used. PAUCam was completely build/design in Spain by our group, with new technological ideas.

- PAUcam has narrow band filters (130A) SED over 4500-8500A in steps of 100A and also Broad Band UGRIY with a FoV of 1deg2 (0.5deg2 without distortions).

- We have observed 27nights (15A-16A) with PAUcam (26 more nights in 16B). We plan to do ~100 deg2 complete to iAB-22.5-23.0 (eg compare to SDSS r~17.77 or GAMMA r~19) with the PAU Survey International Collaboration (PAUS).

- Data (~3Tb) have been reduced with a new pipeline in a record time (a few hours to complete a run). We are debugging data reduction, calibration and optimizing photometrical errors.

- First results show very accurate redshifts errors, as expected. More work needed on outliers, scatter light.

- PAUS closes a gap between spectroscopic and photometric redshift technique and provides 4 new ways to calibrate photometric surveys (DES, Euclid, LSST, WFIRST):
 * accurate and complete redshift samples to train and validate photo-z codes
 * dense galaxy samples to apply cross-correlation clustering N(z) calibration
 * understand spectroscopic target selection and incompleteness
 * calibrated templates for photo-z codes.

- PAUS bridges a gap between sparse WIDE Surveys (SDSS) and small pencil-beam Surveys (COSMOS) to probe intermediate to small scales (1-20 Mpc/h) over different environments (100deg2), where the statistical S/N is largest. Higher resolution allows to measure intrinsic galaxy shape alignments and 3D galaxy clustering for different populations.

- PAUS SED are flux calibrated and have the potential to open a new window in statistical studies of galaxy evolution and star SED templates.

- Current FoV is only 0.35deg2. DES is x10 larger => ~10 deg2/night. Could cover ~15,000 deg2 in 5yrs. More work is needed here: Do we need all filters? different filter range? to i<24 eeds x6 (8m Telescope)
2D vs 3D clustering: Photo-z vs Spectro-z

1) Can measure photometric clustering with 3D (need to assume cosmology)

2) Can measure spectroscopic clustering with 2D angular cross-correlations (no assumptions, but many observables and large covariance)

3) Can use a mix approach 2Dx3D covariance. But should not ignore it!
Forecasts are made by combining 2D and 3D Fisher matrices

- **WL only:** $\mathbf{F} = \mathbf{F}^{2D}_{\{\gamma,p\}} + \mathbf{F}^{CMB}$

- **GC only:** $\mathbf{F} = \mathbf{F}^{3D\ast}_{ss} + \mathbf{F}^{2D}_{\{s\}} + \mathbf{F}^{CMB}$

- **GC + WL (no overlap):** $\mathbf{F} = \mathbf{F}^{3D\ast}_{ss} + \mathbf{F}^{2D}_{\{s\}} + \mathbf{F}^{2D}_{\{\gamma,p\}} + \mathbf{F}^{CMB}$

- **GC + WL (full overlap):** $\mathbf{F} = \mathbf{F}^{3D\ast}_{ss} + \mathbf{F}^{2D}_{\{\gamma,p,s\}} + \mathbf{F}^{CMB}$

$\mathbf{F}^{3D\ast}_{ss}$ has *transverse* modes ($\mu\approx0$) removed

2D Limber=no radial modes, no covariance

See, e.g., *Cai & Bernstein 2012*, *Gaztanaga et al 2012*
Overlapping F (photo: 2D) and B (spec: 3D) Surveys

- Non-zero covariance: $\langle FF, BB \rangle \neq 0$
- New observables: $\langle FB \rangle$ ($\langle FF \rangle$, $\langle BB \rangle$)

\[
\begin{bmatrix}
(FF, FF) & 0 \\
(FF, BB) = 0 & (BB, BB)
\end{bmatrix}
\]

different sky

\[
\begin{bmatrix}
(FF, FF) & (FB, FB) \\
(FF, FB) & (FB, BB)
\end{bmatrix}
\]

same sky

» New framework to combine then
\[C_l = \frac{1}{2\pi^2} \int 4\pi k^2 dk \ P(k) \ \psi^2_l(k) \quad \text{→} \quad C_{ij}(l) = \sum_x H_{ix} H_{jx}. \]

RSD:

\[\psi_l(k) = \int dz \ \phi(z) \ D(z) \ b(z, k) \ j_l(kr(z)) \]

\[\psi^\text{RSD}_l = \int dz \ f(z) \ \phi(z) \ D(z) \]

\[= \frac{2l^2 + 2l - 1}{(2l + 3)(2l - 1)} \]

\[L_0(l) \equiv \frac{l(l-1)}{(2l - 1)(2l + 1)} \]

\[L_1(l) \equiv -\frac{(l+1)(l+2)}{(2l + 1)(2l + 3)} \]

\[L_2(l) \equiv -\frac{l(l-1)}{(2l - 1)(2l + 1)} \]

WL:

\[\psi_l(k) = \int dz \ \rho_{\kappa_j}(z) \ D(z) \ j_l(kr(z)) \]

\[\rho_{\kappa_j}(z) \equiv \frac{3\Omega_m H_0 r(z)}{2H(z)a(z)r_0} \int_z^\infty dz' \frac{r(z';z)}{r(z')} \phi(z') \]
Forecast WL+RSD (galaxy clustering)

Nuisance parameters: one bias per z-bin & pop, photo-z transitions (rij, can be measured), noise (σ/n)

Cosmological: Om - ODE - h - sig8 - Ob - **w0 - wa - γ** - ns - bias(z)

shear-shear (2D): $<\gamma \gamma>$

galaxy-shear (2D need narrow bins) $<g \gamma>$

galaxy-galaxy (3D or narrow bins): $<g g>$ including BAO, RSD and WL magnification

F= Faint (Photometric dz~0.05) sample: $<\gamma_F \gamma_F>$, $<g_F \gamma_F>$, $<g_F g_F>$

B= Bright (Spectroscopic dz~0.003) sample: $<g_B g_B>$, $[<\gamma_B \gamma_B>$, $<g_B \gamma_B>]$

F+B= No overlap => no cross $<FB>=0$ & no Covariance : $<FF BB>=0$

FxB= Overlapping => $<FB>≠0$ & $<FF BB> ≠ 0$

lowRes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Photometric (F)</th>
<th>Spectroscopic (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude limit</td>
<td>$i_{AB} < 24.1$</td>
<td>$i_{AB} < 22.5$</td>
</tr>
<tr>
<td>Redshift range</td>
<td>$0.1 < z < 1.4$</td>
<td>$0.1 < z < 1.2$</td>
</tr>
<tr>
<td>Redshift uncertainty</td>
<td>$0.05(1+z)$</td>
<td>$0.001(1+z)$</td>
</tr>
<tr>
<td>z Bin width ; # bins</td>
<td>$0.1 (1+z)$; 15 bins</td>
<td>$0.01(1+z)$; 72 bins</td>
</tr>
<tr>
<td>Bias: $b(z)$</td>
<td>$1.2 + 0.4(z - 0.5)$</td>
<td>$2 + 2(z - 0.5)$</td>
</tr>
<tr>
<td>Shape noise</td>
<td>0.2</td>
<td>Na</td>
</tr>
<tr>
<td>density [gal/arcmin2]</td>
<td>0.4</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Important => same l_{max}=300 for BAO, WL and RSD (no Limber!)
<table>
<thead>
<tr>
<th>Combination of Probes</th>
<th>Observables included</th>
<th>Fiducial case</th>
<th>Fix Bias</th>
<th>No Lens</th>
<th>No RSD</th>
<th>No BAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:Counts</td>
<td>$\langle \delta_F \delta_F \rangle$</td>
<td>0.06</td>
<td>2.63</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>B:Counts</td>
<td>$\langle \delta_B \delta_B \rangle$</td>
<td>4.33</td>
<td>40.3</td>
<td>4.32</td>
<td>0.22</td>
<td>2.44</td>
</tr>
<tr>
<td>F:All</td>
<td>$\langle \delta_F \delta_F \rangle + \langle \delta_F \gamma_F \rangle + \langle \gamma_F \gamma_F \rangle$</td>
<td>2.68</td>
<td>44.2</td>
<td>0.04</td>
<td>2.19</td>
<td>2.14</td>
</tr>
<tr>
<td>B:All</td>
<td>$\langle \delta_B \delta_B \rangle + \langle \delta_B \gamma_B \rangle + \langle \gamma_B \gamma_B \rangle$</td>
<td>6.89</td>
<td>46.2</td>
<td>4.32</td>
<td>2.48</td>
<td>4.42</td>
</tr>
</tbody>
</table>

B \sim 3F but B \sim F for fixed bias or no RSD

(F:All) most of the FoM comes from WL, but when bias is known, Counts alone is as good

<table>
<thead>
<tr>
<th>F+B combine</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F+B:All</td>
<td>$\langle \delta_F \delta_F \rangle + \langle \delta_B \delta_B \rangle + \langle \delta_B \gamma_F \rangle$</td>
<td>21.1</td>
<td>171</td>
<td>4.72</td>
<td>9.4</td>
<td>14.1</td>
</tr>
<tr>
<td>FxB:All</td>
<td>$F+B:All + \langle \delta_B \delta_B \rangle + \langle \delta_B \gamma_F \rangle$</td>
<td>32.3</td>
<td>190</td>
<td>5.92</td>
<td>15</td>
<td>23.3</td>
</tr>
<tr>
<td>(FxB/F+B):All</td>
<td>Ratio</td>
<td>1.5</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>(FxB-(deltaF)):All</td>
<td>$FxB:All - \langle \delta_F \gamma_F \rangle$</td>
<td>29.9</td>
<td>180</td>
<td>5.92</td>
<td>13.8</td>
<td>21.7</td>
</tr>
<tr>
<td>(FxB-(deltaB)):All</td>
<td>$FxB:All - \langle \delta_B \gamma_F \rangle$</td>
<td>30.6</td>
<td>186</td>
<td>5.92</td>
<td>14.2</td>
<td>21.9</td>
</tr>
<tr>
<td>(FxB-(deltagamma)):All</td>
<td>$FxB:All - \langle \delta_F \gamma_F \rangle - \langle \delta_B \gamma_F \rangle$</td>
<td>14.5</td>
<td>87.5</td>
<td>5.92</td>
<td>6.41</td>
<td>9.69</td>
</tr>
<tr>
<td>(FxB-(BF)):All</td>
<td>$F+B:All + Cov (same sky)$</td>
<td>27.8</td>
<td>178</td>
<td>4.74</td>
<td>12.3</td>
<td>19.2</td>
</tr>
<tr>
<td>(FxB-(BF)):Counts</td>
<td>$F+B:Counts + Cov (same sky)$</td>
<td>5.37</td>
<td>50.7</td>
<td>4.74</td>
<td>1.46</td>
<td>3.41</td>
</tr>
<tr>
<td>(FxB-(BF)/F+B):All</td>
<td>Ratio</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>(FxB-(BF)/F+B):Counts</td>
<td>Ratio</td>
<td>1.1</td>
<td>0.92</td>
<td>1.0</td>
<td>2.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

F+B \sim 10F \sim 3B Spec>Photo, but combination is much better than either

Fx B \sim 1.5(F+B) Samesky is better (60% Covariance and 40% CrossFB)

Importance of physical effects: bias (x5) $>$ WL (x7) $>$ RSD (x2) $>$ BAO (x1.5)

1502.03972 Martin Eriksen
Same sky (+50% in FoM) vs separate sky contributions:

a) New observables (<FB>): +20% in FoM
b) Covariance: +30% in FoM (WL +20%, RSD +30%, bias +40%)

Notes:

- If correlation small, then both a) and b) will be small.

- If different sky, but same probes: expect F+B ~ 2FxB because the area in F+B is 2 times larger

- Even if <FB> correlations are very small FxB ~ F+B because F and B are complementary in the FoM. So there is a lot to learn by F and B combination. In this case same sky has advantage of join nuisance and systematics effects => covariance = reduce nuisance

Example: HOD modeling.

\[
F = \begin{bmatrix}
\frac{d_P^2}{r_{P1} d_P d_1} & \frac{r_{P1}}{d_P d_1} & \frac{r_{P2}}{d_P d_2} \\
\frac{r_{P1}}{d_P d_1} & \frac{d_{1}^2}{r_{12} d_1 d_2} & \frac{r_{12}}{d_1 d_2} \\
\frac{r_{P2}}{d_P d_2} & \frac{r_{12}}{d_1 d_2} & \frac{d_{2}^2}{d_1 d_2}
\end{bmatrix}
\]

\[
\sigma_P^2 = \frac{1}{d_P^2} \left[1 - \left(\frac{2\alpha^2}{1 + r_{12}} \right) \right]^{-1}
\]

\[\alpha \equiv r_{p1} = r_{p2}.\]
<table>
<thead>
<tr>
<th>Survey</th>
<th>D (m)</th>
<th>FoV (deg²)</th>
<th>(N_{\text{gals}}) /sq deg</th>
<th>Sq Deg</th>
<th>Mag limit (i)</th>
<th>R</th>
<th>(\sigma_z/(1+z))</th>
<th>Comp.</th>
<th>(\lambda) Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Res Wide1</td>
<td>8.0</td>
<td>1.5</td>
<td>3.7e4</td>
<td>5,000</td>
<td>24.0</td>
<td>100</td>
<td>0.003</td>
<td>50%</td>
<td>4000-9500</td>
</tr>
<tr>
<td>Low-Res Wide2</td>
<td>8.0</td>
<td>1.5</td>
<td>3.7e4</td>
<td>15,000</td>
<td>24.0</td>
<td>100</td>
<td>0.003</td>
<td>50%</td>
<td>4000-9500</td>
</tr>
<tr>
<td>Low-Res Deep1</td>
<td>8.0</td>
<td>1.5</td>
<td>7.5e4</td>
<td>800</td>
<td>25.0</td>
<td>100</td>
<td>0.003</td>
<td>50%</td>
<td>4000-9500</td>
</tr>
<tr>
<td>Low-Res Deep2</td>
<td>8.0</td>
<td>1.5</td>
<td>7.5e4</td>
<td>8,000</td>
<td>25.0</td>
<td>100</td>
<td>0.003</td>
<td>50%</td>
<td>4000-9500</td>
</tr>
<tr>
<td>LSST</td>
<td>6.5</td>
<td>10</td>
<td>1.4e5</td>
<td>20,000</td>
<td>25.3</td>
<td>6</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESI</td>
<td>4.0</td>
<td>7.0</td>
<td>1.4e3</td>
<td>14,000</td>
<td>23</td>
<td>4000</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1: Fractional errors on the BAO distance scale dilation factor \(R\) (left) and on the parameter combination best constrained by redshift-space distortions, \(f_a\) (right), where we include scales at \(k < 0.2h/\text{Mpc}\). We can see that DESI will set the benchmark for the accuracy of both measurements; LR surveys will approach DESI accuracy, but they will not easily exceed it. The high number density that is achievable with photometric and LR surveys could provide relatively high accuracy in the high-redshift regime \((z > 1.2)\), where DESI is far from the cosmic variance limit; however, in this range the success rate of photometric redshifts is expected to degrade rapidly, thus making our LR forecasts at \(z > 1.2\) certainly optimistic.
Conclusions

- On linear scales there is no need for dz<0.003
- Higher densities reduce shot-noise and allow sample variance cancelation and multi-tracer approach
- Reduce selection effects
- Allow calibration of Broad Band Photo-z (LSST): z-clustering or cross-correlation, photo-z and SED

Need more work (your help: come to parallel Room 213. 10:30 Friday)

Incorporate CMB-S4 Biases (WL calib, dz calib, galaxy bias)
More science cases?
Programatics?